химический каталог




Явление набухания ВМС

Автор О.С.Гамеева

Процесс растворения высокомолекулярных соединений сопровождается явлением набухания. Это самопроизвольный процесс поглощения ВМС низкомолекулярной жидкости - растворителя, приводящий к значительному увеличению массы и объема взятого образца.

С точки зрения современной теории набухание и растворение ВМС рассматриваются как процесс смешения двух жидкостей: растворителя и ВМС, находящегося в переохлажденном жидком состоянии. При набухании ВМС молекулы растворителя проникают в глубь его. Этому способствует неплотная структура ВМС, состоящая из нитевидных и изогнутых макромолекул, переплетенных друг с другом. Молекулы низкомолекулярной жидкости, проникая вглубь, заполняют свободные пространства между макромолекулами, отодвигая их друг от друга и ослабляя межмолекулярное взаимодействие. Образовавшиеся "щели" заполняются новыми молекулами растворителя. В результате увеличиваются объем и масса образца. Так, например, при набухании желатины в воде объем увеличивается в 14 раз. Если препятствовать увеличению объема, то развивается значительное давление, называемое давлением набухания.

Обозначим массу взятого образца до набухания через m0, а массу его после набухания - через m, тогда отношение (m-m0)/m0 называется степенью набухания (выражается в процентах). Измеряя весовым или объемным методом степень набухания во времени, можно проследить за кинетикой процесса.

Различают неограниченное и ограниченное набухание. При неограниченном набухании макромолекулы, достаточно отодвинутые друг от друга, начинают отрываться и переходить в раствор. Так набухают каучуки в бензоле, нитроцеллюлоза в ацетоне, белок в воде. Ограниченное набухание не оканчивается растворением. При всех температурах вулканизированный каучук ограниченно набухает в органических растворителях. Это объясняется наличием в структуре этого полимера поперечных связей между макромолекулами (за счет атомов серы), препятствующих отрыву и переходу их в раствор. Желатина при комнатной температуре набухает в воде ограниченно, а при повышении температуры - неограниченно.

Набухание ВМС носит избирательный характер. Оно наблюдается только в жидкостях с близким к ним химическим строением. Так, углеводородные полимеры хорошо набухают и растворяются в жидких углеводородах (в бензине, бензоле и др.). Полимеры, содержащие в своем составе полярные группы, набухают в полярных растворителях воде, спиртах, карбоновых кислотах, альдегидах.

На первой стадии набухания небольшое количество полярных молекул растворителя взаимодействует с полярными группами ВМС. Процесс сопровождается выделением теплоты - теплоты набухания - и сжатием системы (объем набухшего вещества оказывается меньше суммарного объема ВМС и поглощенной жидкости). В последующие моменты большое число молекул растворителя внедряется в промежутки между макромолекулами уже без выделения теплоты.

На степень и скорость набухания ВМС в данном растворителе влияют следующие факторы: температура, давление, рН среды, присутствие посторонних веществ (особенно электролитов), степень измельчения, "возраст" вещества.

При повышении температуры скорость набухания увеличивается, а степень предельного набухания уменьшается. Это хорошо согласуется с принципом Ле-Шателье (процесс набухания экзотермичен). С повышением давления степень набухания всегда повышается, что также вытекает из принципа Ле-Шателье, поскольку набухание сопровождается уменьшением суммарного объема системы. Влияние рН среды изучалось для белков и целлюлозы. Оказалось, что минимум набухания наблюдается в изоэлектрической точке (для желатины при рН=4,7). Объясняется это тем, что в изоэлектрической точке заряд макромолекул белков минимален, а также минимальна и степень гидратации белковых ионов. Изучалось влияние электролитов для белков и целлюлозы. В результате было установлено, что на набухание в большей степени оказывают влияние анионы, чем катионы электролитов. Одни анионы усиливают, другие ослабляют набухание веществ. В кислой среде все анионы уменьшают набухание. Влияние концентрации ионов Н+ и солей на набухание практически используется в процессе дубления кож, при варке целлюлозы, в производстве дубильных веществ из древесной коры.

Увеличение степени измельченности влияет на скорость набухания, так как это вызывает увеличение поверхности соприкосновения набухающего вещества с растворителем и скорости проникновения молекул растворителя в глубь его. Влияние "возраста" или свежести ВМС особенно важно для белков. Чем свежее ВМС, тем больше степень и скорость набухания его. Уменьшение этих показателей связано с явлением старения ВМС, причиной которого обычно является образование межцепных связей и изменение структуры.

Набухание играет большую роль в жизни животных и растений, а также в ряде технологических процессов. Так, например, в начале процесса пищеварения происходит набухание пищевых веществ под влиянием механических и химических факторов организма. Сокращение мышц, образование опухолей, эластичность стеблей растений объясняются набуханием соответствующих тканей. Типичном процессом набухания является приготовление пищи с применением повышенных температур и давлений.

В процессе получения различных клеющих веществ: столярного, резинового клея, крахмального клейстера, различных лаков - важную роль играет предварительное набухание высокомолекулярных веществ в подходящих растворителях. Набухание происходит в процессе дубления кож, в производстве целлюлозы, в процессе схватывания цемента. Действие так называемых пластификаторов, повышающих эластичность и температурный интервал высокоэластичного состояния веществ, основывается на процессе набухания. Пластификаторами являются низкомолекулярные жидкости, близкие к данному ВМС по химическому составу и добавляемые в относительно небольших количествах. Поглощаясь веществом, пластификатор раздвигает цепи, ослабляет действие сил притяжения между макромолекулами, чем способствует увеличению гибкости цепей.

Смотри так же по теме особенности растворов высокомолекулярных соединений, высаливание ВМС. Студни. Явление защиты, вязкость растворов ВМС и определение молекулярной массы высокомолекулярных соединений.


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
как правильно заполнить уличный стенд
ремонт холодильника Exqvisit 431-1-2618
лампы филипс h4
светоотражающие наклейки на номера авто отзывы

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(04.12.2016)