химический каталог




ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС

Автор Химическая энциклопедия г.р. Н.С.Зефиров

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС (ЯМР), явление резонансного поглощения радиочастотной электромагн. энергии веществом с ненулевыми магн. моментами ядер, находящимся во внешний постоянном мага. поле. Ненулевым ядерным магн. моментом обладают ядра 1Н, 2Н, 13С, 14N, 15N, 19F, 29Si, 31P и др. ЯМР обычно наблюдается в однородном постоянном магн. поле В0, на которое накладывается слабое радиочастотное поле В1 перпендикулярное полю В0. Для веществ, у которых ядерный спин I= 1/2 (1H, 13C, 15N, 19F, 29Si, 31P и др.), в поле В0 возможны две ориентации магн. дипольного момента ядра "по полю" и "против поля". Возникающие два уровня энергии Е за счет взаимодействие магн. момента ядра с полем В0 разделены интервалом
При условии, что илигде h - постоянная Планка, v0 - частота радиочастотного поля В1, - круговая частота,- так называемой гиромагн. отношение ядра, наблюдается резонансное поглощение энергии поля B1, названное ЯМР. Для нуклидов 1H, 13C, 31Р частоты ЯМР в поле В0= 11,7 Тл равны соответственно (в МГц): 500, 160,42 и 202,4; значения (в МГц/Тл): 42,58, 10,68 и 17,24. Согласно квантовой модели в поле В0возникает 2I+1 уровней энергии, переходы между к-рыми разрешены при где т - магн. квантовое число.

Техника эксперимента. Параметры спектров ЯМР. На явлении ЯМР основана спектроскопия ЯМР. Спектры ЯМР регистрируют с помощью радиоспектрометров (рис.). Образец исследуемого вещества помещают как сердечник в катушку генерирующего контура (поле B1), расположенного в зазоре магнита, создающего поле В0так, что При наступает резонансное поглощение, что вызывает падение напряжения на контуре, в схему которого включена катушка с образцом. Падение напряжения детектируется, усиливается и подается на развертку осциллографа или записывающее устройство. В современной радиоспектрометрах ЯМР обычно используют мага, поля напряженностью 1-12 Тл. Область спектра, в которой имеется детектируемый сигнал с одним или несколько максимумами, называют линией поглощения ЯМР. Ширина наблюдаемой линии, измеренная на половине макс. интенсивности и выраженная в Гц, называют шириной линии ЯМР. Разрешение спектра ЯМР - миним. ширина линии ЯМР, к-рую позволяет наблюдать данный спектрометр. Скорость прохождения - скорость (в Гц/с), с которой изменяется напряженность магн. поля или частота воздействующего на образец радиочастотного излучения при получении спектра ЯМР.

Схема спектрометра ЯМР: 1 - катушка с образцом; 2 - полюса магнита; 3 -генератор радиочастотного поля; 4 -усилитель и детектор; 5 - генератор модулирующего напряжения; 6 - катушки модуляции поля В0; 7 - осциллограф.

Поглощенную энергию система перераспределяет внутри себя (так называемой спин-спиновая, или поперечная релаксация; характеристич. время Т2) и отдает в окружающую среду (спин-решеточная релаксация, время релаксации Т1). Времена Т1и Т2 несут информацию о межъядерных расстояниях и временах корреляции различные мол. движений. Измерения зависимости Т1и Т2от температуры и частоты v0 дают информацию о характере теплового движения, химический равновесиях, фазовых переходах и др. В твердых телах с жесткой решеткой Т2 = 10 мкс, а Т1 > 103 с, т. к. регулярный механизм спин-решеточной релаксации отсутствует и релаксация обусловлена парамагн. примесями. Из-за малости Т2 естественная ширина линии ЯМР весьма велика (десятки кГц), их регистрация -область ЯМР широких линий. В жидкостях малой вязкости Т1T2и измеряется секундами. Соотв. линии ЯМР имеют ширину порядка 10-1 Гц (ЯМР высокого разрешения). Для неискаженного воспроизведения формы линии надо проходить через линию шириной 0,1 Гц в течение 100 с. Это накладывает существенные ограничения на чувствительность спектрометров ЯМР.
Основной параметр спектра ЯМР - химический сдвиг- взятое с соответствующим знаком отношение разности частот наблюдаемого сигнала ЯМР и некоторого условно выбранного эталонного сигнала к.-л. стандарта к частоте эталонного сигнала (выражается в миллионных долях, м. д.). Химическая сдвиги ЯМР измеряют в безразмерных величинах отсчитанных от пика эталонного сигнала. Если стандарт дает сигнал на частоте v0, то В зависимости от природы исследуемых ядер различают протонный ЯМР, или ПМР, и ЯМР13С (таблицы величин химический сдвигов приведены на форзацах тома),. ЯМР19F (см. Фторорганические соединения), ЯМР31Р (см. Фосфорорганические соединения)и т. д. Величины обладают существенной характеристичностью и позволяют определять по спектрам ЯМР наличие определенных мол. фрагментов. Соответствующие данные о химический сдвигах различные ядер публикуются в справочных и учебных пособиях, а также заносятся в базы данных, к-рыми снабжаются современной спектрометры ЯМР. В рядах близких по строению соединений химический сдвиг прямо пропорционален электронной плотности на соответствующих ядрах.
Общепринятый стандарт для ПМР и ЯМР13С - тетраметилсилан (ТМС). Стандарт может быть растворен в исследуемом растворе (внутр. эталон) или помещен, например, в запаянный капилляр, находящийся внутри ампулы с образцом (внешний эталон). В качестве растворителей могут использоваться лишь такие, чье собственное поглощение не перекрывается с областью, представляющей интерес для исследования. Для ПМР лучшие растворители - те, что не содержат протонов (СCl4, CDCl3, CS2, D2O и др.).
В многоатомных молекулах ядра одинаковых атомов, занимающих химически неэквивалентные положения, имеют различающиеся химический сдвиги, обусловленные различием магн. экранирования ядер валентными электронами (такие ядра называют анизохронными). Для i-го ядра где- постоянная диамагн. экранирования, измеряемая в м. д. Для протонов типичный интервал изменений- до 20 м. д., для более тяжелых ядер эти интервалы на 2-3 порядка больше.
Важный параметр спектров ЯМР - константа спин-спинового взаимодействия (константа ССВ) - мера непрямого ССВ между различные магн. ядрами одной молекулы (см. Спин-спиновое взаимодействие); выражается в Гц.
Взаимод. ядерных спинов со спинами электронов, содержащимися в молекуле между ядрами i и j, приводят к взаимной ориентации этих ядер в поле В0 (ССВ). При достаточном разрешении ССВ приводит к дополнительной мультиплетности линий, отвечающих определенным значениям химический сдвигов: где Jij - константы ССВ; Fij - величины, значения которых определяются спинами ядер i и j, симметрией соответствующего мол. фрагмента, диэдральными углами между химическими связями и числом этих связей между ядрами, участвующими в ССВ.
Если химический сдвиги достаточно велики, т. е. min max (Jij), то ССВ проявляются в виде простых мультиплетов с биномиальным распределением интенсивностей (спектры первого порядка). Так в этильной группе сигнал метильных протонов проявляется в виде триплета с соотношением интенсивностей 1:2:1, а сигнал метиленовых протонов - в виде квадруплета с соотношением интенсивностей 1:3:3:1. В спектрах ЯМР13С метиновые группы - дублеты (1:1), а метиленовые и метильные - соответственно триплеты и квадруплеты, но с большими, чем в протонных спектpax, значениями констант ССВ. Химическая сдвиги в спектрах первого порядка равны интервалам между центрами мультиплетов, а Jij - расстояниям между соседними пиками мультиплета. Если условие первого порядка не выполняется, то спектры становятся сложными: в них ни один интервал, вообще говоря, не равен ни ни Jij. Точные значения параметров спектров получают из квантовомеханические расчетов. Соответствующие программы входят в мат. обеспечение современной спектрометров ЯМР. Информативность химический сдвигов и констант ССВ превратила спектроскопию ЯМР высокого разрешения в один из важнейших методов качеств. и количественное анализа сложных смесей, систем, препаратов и композиций, а также исследования строения и реакционное способности молекул. При изучении конформаций, вырожденных и др. динамич. систем, геометрическая структуры белковых молекул в растворе, при неразрушающем локальном химический анализе живых организмов и т. п. возможности методов ЯМР уникальны.

Ядерная намагниченность вещества. В соответствии с распределением Больцмана в двухуровневой спин-системе из N спинов отношение числа спинов N+ на нижнем уровне к числу спинов N- на верхнем уровне равно где k - постоянная Больцмана; Т - температура. При В0 = 1 Тл и Т=300 К для протонов отношение N+/N-.= 1,00005. Это отношение и определяет величину ядерной намагниченности вещества, помещенного в поле B0. Магн. момент m каждого ядра совершает прецессионное движение относительно оси z, вдоль которой направлено поле B0; частота этого движения равна частоте ЯМР. Сумма проекций прецессирующих ядерных моментов на ось z образует макроскопич. намагниченность вещества Mz= 1018 В плоскости ху, перпендикулярной оси z, проекции векторов из-за случайности фаз прецессии равны нулю: Мxy = 0. Поглощение энергии при ЯМР означает, что в единицу времени с нижнего уровня на верхний переходит больше спинов, чем в обратном направлении, т. е. разность населенностей N+— N- убывает (нагрев спин-системы, насыщение ЯМР). При насыщении в стационарном режиме намагниченность системы может сильно возрасти. Это - так называемой эффект Оверхаузера, для ядер обозначаемый NOE (Nuclear Overhauser effect), который широко применяется для повышения чувствительности, а также для оценки межъядерных расстояний при изучении мол. геометрии методами спектроскопии ЯМР.

Векторная модель ЯМР. При регистрации ЯМР на образец накладывают радиочастотное поле , действующее в плоскости ху. В этой плоскости поле В1можно рассматривать как два вектора с амплитудами В1т/2, вращающихся с частотой в противоположных направлениях. Вводят вращающуюся систему координат x"y"z, ось х" которой совпадает с вектором В1т/2, вращающимся в том же направлении, что и векторы Его воздействие вызывает изменение угла при вершине конуса прецессии ядерных магн. моментов; ядерная намагниченность Мz начинает зависеть от времени, а в плоскости х"у" появляется отличная от нуля проекция ядерной намагниченности. В неподвижной системе координат эта проекция вращается с частотой т. е. в катушке индуктивности наводится радиочастотное напряжение, которое после детектирования и дает сигнал ЯМР - функцию ядерной намагниченности от частоты различают медленное изменение (свип-режим) и импульсный ЯМР. Реальное сложное движение вектора ядерной намагниченности создает в плоскости х"у" два независимых сигнала: Мх, (синфазный с радиочастотным напряжением В1)и Му" (сдвинутый относительно B1 по фазе на 90 °С). Одновременная регистрация Мх"и My" (квадратурное детектирование) вдвое повышает чувствительность спектрометра ЯМР. При достаточно большой амплитуде Впроекции Мz = Мх"у"=0(насыщение ЯМР). Поэтому при непрерывном действии поля В1его амплитуда должна быть весьма малой, чтобы сохранить неизменными исходные условия наблюдения.
В импульсном ЯМР величина В1,наоборот, выбирается настолько большой, чтобы за время tиТ2отклонить во вращающейся системе координат вектор Mzот оси z на угол . При= 90° импульс называют 90°-ным (/2-импульс); под его воздействием вектор ядерной намагниченности оказывается в плоскости х"у", т. е. После окончания импульса вектор My" начинает убывать по амплитуде со временем Т2 благодаря расхождению по фазе составляющих его элементарных векторов (спин-спиновая релаксация). Восстановление равновесной ядерной намагниченности Мz происходит со временем спин-решеточной релаксации T1. При= 180° (импульс) вектор Mz укладывается вдоль отрицат. направления оси z, релаксируя после окончания импульса к своему равновесному положению. Комбинации иимпульсов широко используются в современной многоимпульсных вариантах спектроскопии ЯМР.
Важной особенностью вращающейся системы координат является различие резонансных частот в ней и в неподвижной системе координат: если B1Влок(статич. локальное поле), то вектор М прецессирует во вращающейся системе координат относительно поля При точной настройке в резонанс частота ЯМР во вращающейся системе координат Это позволяет существенно расширить возможности ЯМР при исследовании медленных процессов в веществе.

Спин-эхо. Если на спин-систeму наложить- и-импульсы, разделенные интервалом времени то через с после этого вектор Му", частично распавшийся из-за T2-процессов (спин-спиновая релаксация) на веер векторов вновь соберется вдоль оси у", образовав сигнал эха. Спин-эхо устраняет эффекты неоднородности условий резонанса, вызванные дефектами аппаратуры или образца, химический сдвигами и т. п. Подробнее см. Спинового эха метод.

Фурье-спектроскопия. Одиночная линия ЯМР, сдвинутая на частоту относительно после 90°-ного импульса даст во вращающейся системе координат сигнал

где Фi - так называемой фаза линии. Если линий не одна, а несколько и 90°-ный импульс достаточно короткий, т. е. где- интервал частот, на котором расположены эти линии (ширина спектра ЯМР), то в плоскости х"у" возникнет "веер" сигналов Эти векторы, вращаясь с разными частотами, создают биения (интерферограмму). Фурье-образ интерферограммы есть искомый спектр ЯМР (с точностью до коррекции фаз линий Фi, чтобы все линии имели стандартную форму сигнала поглощения). Условия медленного прохождения выполняются при регистрации интерферограммы, т. е. для всех линий спектра одновременно. Поэтому фурье-спектроскопия тем выгоднее, чем более узкие линии надо регистрировать и чем шире интервал частот, на котором эти линии расположены. ЯМР-фурье-спектроскопия позволяет наблюдать спектры всех магн. ядер.

Двойной и тройной резонанс. Для упрощения сложных спектров ЯМР на образец накладывают второе радиочастотное поле В2, частота v2 которого совпадает с положением сигнала, мешающего расшифровке спектра. Амплитуда В2выбирается достаточной для насыщения переходов соответствующего ядра, т. е. z - проекция его спина обращается в нуль, устраняя ССВ этого ядра с другими ядрами молекулы. Если наложить на поле В2шумовую модуляцию, то достигается выключение ССВ всех ядер в выбранном спектральном интервале. Такое подавление широко применяют при наблюдении ЯМР13С и др. ядер. Методом тройного резонанса ЯМР13С-{1Н}-57Fе измерялись химический сдвиги в органическое соединение железа. Применяют многочисленные разновидности множественных резонансов.

Двумерная и многомерная фурье-спектроскопия. Двумерная фурье-спектроскопия - естественное обобщение методов двойного резонанса. В одномерной спектроскопии спектр получают как фурье-образ отклика G(t) спин-системы на зондирующий импульс. В двумерной спектроскопии эксперимент начинается с приготовления спин-системы в некотором заданном состоянии посредством импульса или серии импульсов. Время эволюции системы после ее приготовления разбивается на равные интервалы После каждого i-го интервала t2i = ni xt2 (ni= 1, 2, 3, ..., N2)производится обычная регистрация получившегося i-гo отклика Gi(t1). После N2 фурье-преобразований получают N2спектров, отображающих в частотной области (от спектра к спектру) эволюцию спин-системы на интервале t2. Эволюция каждого соответственного пика в этих спектрах создает интерферограмму Gj(t2). После необходимого числа фурье-преобразований получают двумерный спектр отображающий выбранные парные взаимодействие в изучаемой системе. Чаще всего такой спектр изображают в виде карты, пики на которой окружены замкнутыми изолиниями. Двумерную спектроскопию ЯМР применяют для анализа протон-протонных, протон-углеродных, углерод-углеродных и т. п. спин-спиновых взаимодействие в самых сложных молекулах, для исследования многопозиционного химический обмена, структурного анализа белков в растворах. Разбив при помощи удачно подобранной импульсной последовательности период эволюции на две части, вводят в эксперимент время t3 и переходят к 3-мерной спектроскопии; ведутся успешные работы по 4- и 5-мерной фурье-спектроскопии ЯМР.

Многоквантовая фильтрация. Использование импульсных последовательностей позволяет, помимо разрешенных переходов с наблюдать также первоначально запрещенные переходыm = 3 и т. д. (так называемой n-квантовая фильтрация). При включении в схему эксперимента двухквантового фильтра из сложного спектра высокого разрешения будут удалены все линии первого порядка. Это существенно облегчает интерпретацию спектров олиго- и полипептидов и др. сложных молекул.

Химическая обмен и спектры ЯМР (динамич. ЯМР). Параметрами двухпозиционного обмена А В служат времена пребывания и а также вероятности пребывания иПри низкой температуре спектр ЯМР состоит из двух узких линий, отстоящих на Гц; затем при уменьшении и линии начинают уширяться, оставаясь на своих местах. Когда частота обмена начинает превышать исходное расстояние между линиями, линии начинают сближаться, а при 10-кратном превышении образуется одна широкая линия в центре интервала (vA, vB), если При дальнейшем росте температуры эта объединенная линия становится узкой. Сопоставление эксперим. спектра с расчетным позволяет для каждой температуры указать точную частоту химический обмена, по этим данным вычисляют термодинамическое характеристики процесса. При многопозиционном обмене в сложном спектре ЯМР теоретич. спектр получают из квантовомеханические расчета. Динамич. ЯМР - один из основные методов изучения стереохимический нежесткости, конформационных равновесий и т. п.

Механизмы релаксации. Релаксационная спектроскопия. Ядерная магн. релаксация обусловлена процессами обмена энергией между ядерными спинами. Переориентация спинов в поле В0происходит под действием флуктуирующих локальных магн. или электростатич. полей. В зависимости от механизма обмена энергией различают диполь-дипольную, квадрупольную, спин-вращательную и др. типы релаксации.
Поскольку различные типы внутр. движений имеют различные времена корреляции, они может быть выявлены с помощью измерения зависимостей времен спин-решеточной и спин-спиновой релаксации Т1и Т2 от частоты магн. полей и температуры. Измерения Т2и обнаружение максимумов скорости спин-решеточной релаксации позволяют отнести наблюдаемые изменения к конкретным типам движений специфический мол. фрагментов, однозначно указывают на последовательность "размораживания" различные типов подвижности. Смещения максимумов Т1-1при изменении В0 дают возможность измерить частоты соответствующих движений и на основании известных теоретич. моделей измерить термодинамическое параметры различные процессов в изучаемом образце. В простых случаях, если доминирует диполь-дипольный механизм релаксации, то из данных релаксационной спектроскопии ЯМР извлекают сведения о межъядерных расстояниях в молекулах жидкостей.

Вращение под магическим углом. Выражение для потенциала диполь-дипольного взаимодействия содержит множители где - угол между В0 и межъядерным вектором rij. При=arccos 3-1/2 = 54°44" ("магический" угол) эти множители обращаются в нуль, т. е. исчезают соответствующие вклады в ширину линии. Если закрутить твердый образец с очень большой скоростью вокруг оси, наклоненной под магич. углом к В0, то в твердом теле можно получить спектры высокого разрешения с почти столь же узкими линиями, как в жидкости.

Широкие линии в твердых телах. В кристаллах с жесткой решеткой форма линии ЯМР обусловлена статич. распределением локальных магн. полей. Все ядра решетки, за исключением кластера, в трансляционно-инвариантном объеме V0 вокруг рассматриваемого ядра, дают гауссово распределение g(v) = exp(-v2/2a2), где v - расстояние от центра линии; ширина гауссианы а обратно пропорциональна среднему геометрическая объемов V0 и V1,причем V1 характеризует среднюю по всему кристаллу концентрацию магн. ядер. Внутри V0 концентрация магн. ядер больше средней, и ближние ядра благодаря диполь-дипольному взаимодействие и химический сдвигам создают спектр, ограниченный на интервале (-b, b), где b примерно вдвое больше а. В первом приближении спектр кластера можно считать прямоугольником, тогда фурье-образ линии, т. е. отклик спин-системы на 90°-ный импульс будет

Параметры а и b позволяют определять координаты легких ядер, а их температурная зависимость - изучать динамику кристаллич. решетки, диффузию и др.

Квадрупольные эффекты. В твердых телах для ядер со спином I>1/2 возникают дополнительной уровни энергии. Если e2Qq < 1 МГц, где eQ - электрич. квадрупольный момент ядра, eq - градиент напряженности электрич. поля (ГЭП) на ядре, то для монокристалла наблюдается 2I-1 линий, расстояния между к-рыми закономерно меняются при изменении ориентации кристалла в поле В0. Из этих зависимостей находят положения главных осей тензора ГЭП, значения параметра его асимметрии и e2Qq. Выявляется химический и кристаллографич. неэквивалентность. Это полезно при исследовании фазовых переходов и динамики решетки в сегнетоэлектриках, цеолитах и др. практически важных веществах. Примеси, вакансии, дислокации, любые напряжения решетки создают на квадрупольных ядрах разброс ГЭП, размывая линии ЯМР. Если МГц, то в хороших кристаллах соответствующие переходы можно наблюдать без поля В0. Это ядерный квадрупольный резонанс.

Применение спектроскопии ЯМР. Спектроскопия ЯМР относится к неразрушающим методам анализа. Совр. импульсная ЯМР фурье-спектроскопия позволяет вести анализ по 80 магн. ядрам. ЯМР спектроскопия - один из основные физических-химический методов анализа, ее данные используют для однозначной идентификации как промежуточные продуктов химический реакций, так и целевых веществ. Помимо структурных отнесений и количественное анализа, спектроскопия ЯМР приносит информацию о конформационных равновесиях, диффузии атомов и молекул в твердых телах, внутр. движениях, водородных связях и ассоциации в жидкостях, кето-енольной таутомерии, металлo- и прототропии, упорядоченности и распределении звеньев в полимерных цепях, адсорбции веществ, электронной структуре ионных кристаллов, жидких кристаллов и др. Спектроскопия ЯМР - источник информации о структуре биополимеров, в том числе белковых молекул в растворах, сопоставимой по достоверности с данными рентгеноструктурного анализа. В 80-е гг. началось бурное внедрение методов спектроскопии и томографии ЯМР в медицину для диагностики сложных заболеваний и при диспансеризации населения.
Число и положение линий в спектрах ЯМР однозначно характеризуют все фракции сырой нефти, синтетич. каучуков, пластмасс, сланцев, углей, лекарств, препаратов, продукции химический и фармацевтич. промышлености и др.
Интенсивность и ширина линии ЯМР воды или масла позволяют с высокой точностью измерять влажность и масличность семян, сохранность зерна. При отстройке от сигналов воды можно регистрировать содержание клейковины в каждом зерне, что так же, как и анализ масличности, позволяет вести ускоренную селекцию с.-х. культур.
Применение все более сильных магн. полей (до 14 Тл в серийных приборах и до 19 Тл в эксперим. установках) обеспечивает возможность полного определения структуры белковых молекул в растворах, экспресс-анализа биологическое жидкостей (концентрации эндогенных метаболитов в крови, моче, лимфе, спинномозговой жидкости), контроля качества новых полимерных материалов. При этом применяют многочисленные варианты многоквантовых и многомерных фурье-спектроскопич. методик.
Явление ЯМР открыли Ф. Блох и Э. Пёрселл (1946), за что были удостоены Нобелевской премии (1952).

Литература: Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963; Эмсли Дж., Финей Дж., Сатклиф Л., Спектроскопия ЯМР высокого разрешения, пер. с англ., т. 1-2, М., 1968-69; Фаррар Т., Беккер Э., Импульсная и фурье-спектроскопия ЯМР, пер. с англ., М., 1973; Бови Ф. А., ЯМР высокого разрешения макромолекул, пер. с англ., М., 1977; Лундин А.Г., Федин Э.И., ЯМР-спектроскопия, М., 1986; Эрнст Р., Боденхаузен Дж., Бакаун А., ЯМР в одном и двух измерениях, пер. с англ., М., 1990; Зеер Э. П., Зобов В. Е., Фалалеев О. В., Новые ("кросс-сингулярные") эффекты в ЯМР поликристаллов, Новосиб., 1991; Дероум Э., Современные методы ЯМР для химических исследований, пер. с англ., М., 1992; Rand all J., Polymer sequence determination: Carbon-13 NMR Method, N. Y., 1977.

Э. И. Федин.

Химическая энциклопедия. Том 5 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
купить световую наклейку на такси в брянске
климовск чистка кондиционера
корпус фильтра для воды джилекс купить
hj,,b dbkmzvc rjywthn 2017

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(27.03.2017)