химический каталог




ЭЛЕКТРОХИМИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ИНФОРМАЦИИ

Автор Химическая энциклопедия г.р. Н.С.Зефиров

ЭЛЕКТРОХИМИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ИНФОРМАЦИИ (хемотроны), приборы и устройства автоматики, измерит. и вычислит. техники, действие которых основано на электрохимический процессах и явлениях. Основу действия ЭЛЕКТРОХИМИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ИНФОРМАЦИИ п. и. могут составлять: концентрационная поляризация электродов, электрокинетические явления, анодное растворение (или катодное электроосаждение)и др.
Рассмотрим, например, принцип работы электрохимический датчика механические колебаний, в основе которого лежит концентрационная поляризация. Датчик представляет собой электрохимический ячейку из стекла или фторопласта, заполненную раствором, который содержит окисленную и восстановленную формы к.-л. в-ва, например ионы [I3]- (комплексный ион, состоящий из молекулы I2 и иодида) и I-, причем концентрация восстановл. формы в 10-100 раз больше концентрации окисленной формы. Если в такую ячейку ввести два инертных электрода (например, платиновых сетчатых), поверхность одного из которых значительно меньше поверхности другого (микроэлектрод), то величина электрич. тока через ячейку будет лимитироваться процессами массопереноса вещества, реагирующего на микроэлектроде. Мех. колебания корпуса прибора (вдоль оси чувствительности) преобразуются в колебания электролита относительно микроэлектрода, вследствие этого ускоряются гидродинамич. перенос реагирующего вещества к микрозлектроду и протекающая на нем реакция. В результате дополнительно к постоянному фоновому току появляется переменная составляющая тока, которая и содержит информацию о внешний механические воздействии. Передаточные функции ЭЛЕКТРОХИМИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ИНФОРМАЦИИ п. и., связывающие реакцию в приборе с входным сигналом, полностью определяются импедансными характеристиками, включая перекрестный импеданс (см. Импедансный метод).
Электрокинетическая явления использованы при создании преобразователей перепада давления, линейных и угловых ускорений. При заполнении органическое жидкостью (чаще всего ацетоном) капиллярной пористой перегородки из стекла, керамики или др. диэлектрика на поверхности капилляров возникает двойной электрический слой. Диффузная часть слоя благодаря тепловому движению находится в жидкости и способна перемещаться вдоль поверхности капилляров вместе с жидкостью. При наложении перепада давления на пористую перегородку электрич. заряд диффузной части двойного электрического слоя в определенной степени увлекается движущейся жидкостью и ионный ток фиксируется электродами, расположенными по обе стороны пористой перегородки. Приборы, основанные на электрокинетическая явлениях, отличаются от концентрационных ЭЛЕКТРОХИМИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ИНФОРМАЦИИ п. и. более высоким верхним пределом частотного диапазона (500 Гц и выше), но при этом имеют и более высокое внутр. электрич. сопротивление (около 1 МОм).
Анодное растворение (или катодное электроосаждение) используют в ртутном кулонометре, представляющем собой прозрачный капилляр, в который помещены два столбика ртути, разделенные раствором на основе к.-л. из солей Hg(II). При прохождении электрич. тока через кулонометр на одном из ртутных столбиков (аноде) протекает ионизация ртути, а на катоде - восстановление Hg(II) до металла. В результате объем электролита между электродами (индикатор прибора) перемещается по капилляру в сторону анода на величину, пропорциональную интегралу тока по времени протекания. Ртутные кулонометры применяют в различные устройствах: счетчиках времени наработки, счетчиках ампер-часов, времязадающих устройствах и др. Например, разработаны ртутные кулонометры с полным зарядом 23 Кл, диапазоном рабочих температур от -30° до 70 °С и погрешностью интегрирования 2%. Существует водородный кулонометр, в котором при пропускании тока на катоде протекает разряд ионов водорода, на аноде - ионизация мол. водорода. В результате происходит перенос газообразного водорода через пористую перегородку, пропитанную серной кислотой, из "анодного" отсека электродной камеры в катодный, возникает разность давлений, которая перемещает индикаторную жидкость в сторону анодного отсека на величину, пропорциональную кол-ву прошедшего электричества. На основе водородного кулоно-метра разработан счетчик ампер-часов постоянного тока для измерения количества электричества при заряде и разряде аккумуляторных батарей, который имеет порог преобразования 35 000 А * ч при погрешности 4%.
Разнообразные приборы для интегрирования тока, счета импульсов, временные и времязадающие устройства созданы на основе электрохимический интеграторов с дискретным считыванием информации - т. называют дискретных интеграторов (ДИ). В простейшем случае ДИ - это герметичная ячейка, заполненная раствором NaCl, в к-рую помещены два серебряных электрода. Один из них (электрод-склад) предварительно покрывается
тонким слоем AgCl и подключается к отрицат. полюсу источника тока, второй (рабочий электрод) - к положит. полюсу. На рабочем электроде образуется AgCl (стадия заряда ДИ), а на электроде-складе происходит восстановление AgCl до металлич. Ag. Кол-во вещества, образовавшегося на рабочем электроде, пропорционально интегралу тока по времени протекания. Если изменить полярность тока, проходящего через ДИ, то на рабочем электроде AgCl восстанавливается до Ag, а на электроде-складе образуется AgCl (разряд ДИ). После того как AgCl на рабочем электроде полностью восстановится, напряжение на ДИ скачкообразно поднимается до 0,7-1 В. Скачок напряжения в конце разряда используется для включения различные исполнит. устройств, прекращающих дальнейшее протекание тока через ДИ. Если разряд ДИ проводить постоянным током, время до скачкообразного подъема напряжения пропорционально кол-ву в-ва на рабочем электроде. Следовательно, количество электричества, поступившего на ДИ при интегрировании, можно рассчитать по интервалу времени от включения тока до конца разряда при фиксир. токе. Полный заряд ДИ может составлять 4,5 Юг, погрешность 1%, рабочий диапазон температур от -40° до 50 °С, при габаритах: диаметр 12 мм, длина 20 мм, масса 5,3 г.
ЭЛЕКТРОХИМИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ИНФОРМАЦИИ п. и. применяют в качестве датчиков сейсмич. колебаний Земли, датчиков давления, градиента давления, линейных и угловых ускорений и др. механические и акустич. величин в океанологич. исследованиях. Концентрационный электрохимический сейсмоприемник, используемый для измерения сейсмич. шумов в океане, имеет чувствительность 10 мкВ/мкм смещения грунта на частоте 0,1 Гц. Электрохимический управляемые сопротивления, оптический модуляторы, усилители, выпрямители, реле времени, нелинейные емкости, генераторы колебаний тока и напряжения, запоминающие, интегрирующие элементы отличаются малыми габаритами, небольшой потребляемой мощностью (от 10-8 до 10-3 Вт), высокой чувствительностью, надежностью работы в диапазоне от 10-7 до 10 Гц, простотой схем включения, вибро- и ударостойкостью.

Литература: Электрохимические преобразователи информации, М., 1966; Введение в молекулярную электронику, М., 1984; Дроздов Т.А., Соловьев С. Л., "Изв. АН СССР. Физика Земли", 1990, № 8, с. 10-19.

М. А. Новицкий.

Химическая энциклопедия. Том 5 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
курсы excel в мытищах
Стул T-M C3419
Бонус за клик по промокоду "Галактика" в КНС - MK702RU-A - 18 лет надежной работы!
вентиляторы вкрн-б

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(04.12.2016)