ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
Автор Химическая энциклопедия г.р. Н.С.ЗефировЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
(ситовая
хро-матография), жидкостная хроматография, основанная наразличные способности
молекул разного размера проникать в поры неионогенного геля, который служит
неподвижной фазой. Различают гель-проникающую хроматографию (элюент - органическое
растворитель) и гель-фильтрацию (элюент - вода).
Ддя ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. используют макропористые неорганическое
или полимерные сорбенты. Для ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. полярных полимеров неорганическое сорбенты (силикагели
и макропористые стекла) модифицируют кремнийорганическое радикалами, а для ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х.
гидрофильных полимеров -гидрофильными группами. Среди полимерных сорбентов
наиболее распространены стирол-дивинилбензольные (для ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. высокополимеров
и олигомеров). Для гель-фильтрации биополимеров, прежде всего белков, используют
гидрофильные полимерные сорбенты (сефадексы - декстраны с поперечными сшивками,
а также полиакриламидные гели) или модифицированные полисахаридами макропористые
силикагели.
ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. эффективно применяют при разработке
новых полимеров, технол. процессов их получения, контроле производства и стандартизации
полимеров. ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. используют для анализа ММР полимеров, исследования, выделения
и очистки полимеров, в том числе биополимеров.
При ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. молекулы, имеющие в растворе большой
размер, или совсем не проникают, или проникают только в часть пор сорбента
(геля) и вымываются из колонки раньше, чем небольшие молекулы. Соотношение
эффективных размеров макромолекул и пор сорбента определяет коэффициент распределения
Kd, от которого зависит объем удерживания компонента VR
в колонке:
где V0 - объем пространства
между частицами сорбента, Vp -объем пор сорбента.
Эффективным размером макромолекулы при
Э. х. является ее гидродинамич. радиус R, который вместе с мол. массой
полимера М определяет характеристич. вязкость полимера
. Универсальную калибровочную зависимость VR от произведения
(уравение 2) впервые получил экспериментально Г. Бенуа, она имеет вид (рис.
1):
где А и В - константы. Уравнение (2) одинаково
справедливо для линейных и разветвленных полимеров, блок- и привитых сополимеров,
олигомеров. Используя уравение Марка-Ку-на-Хувинка:
где и
а
- табулированные константы, учитывающие взаимодействие полимера с растворителем
и степень жесткости макромолекулы, можно перейти от универсальной зависимости
(2) к рабочей зависимости (3) для исследуемого образца (рис. 2):
где С2
= B(a+1).
Рис. 1. Универсальная калибровочная
зависимость Бенуа для эксклюзионной хроматографии:
- линейный полистирол;
- разветвленный полистирол; (+) -звездообразный полистирол; -
гетеропривитой сополимер полистирола и полиметилметакрилата;
- полиметилметакрилат; -
разветвленный полифенилсилоксан;
-полибутадиен.
С др. стороны, получив экспериментально
зависимость (2) с использованием полимерных стандартов (не менее 3 образцов),
для которых известны М,
и а, а также зависимость (3) для полимера с неизвестными константами,
можно найти для него ,
а
и константы С1 и С2. Можно определять
зависимость (3) и непосредственно путем калибровки узкодисперсными (с известными
М)и широкодисперсными (с известным ММР) стандартами. Располагая
эксклюзионной хроматограммой и калибровочной зависимостью определяют ММР
исследуемого полимера.
Рис. 2. Рабочая калибровочная зависимость
для эксклюзионной хроматографии.
В области от V0до VT
(объем колонки, доступный для растворителя и молекул ниже определенного
размера, соответствующего Ммин) рабочая зависимость имеет
линейный (квазилинейный) характер. Соответствующие объемам
V0
и VT молекулярной массы представляют собой пределы исключения
- Ммакс (молекулы большого размера, не проникают в поры сорбента)
и Ммин, (молекулы небольшие, полностью проникают в поры
сорбента). Эти величины, а также тангенс угла наклона линейной части калибровочной
зависимости селективности разделения С2 = Vp/lg(Mмакс/Mмин)и
степень ее линейности определяют качество сорбента для ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. Благодаря
логарифмич. зависимости V от М селективность разделения dV/dM
падает
с увеличением М, поскольку С2 = (dV/dM)M.
Для
разделения макромолекул с близкими М требуется сорбент, работающий
в узком диапазоне М и обладающий высокой селективностью С2.
Сорбенты с порами одного размера теоретически способны разделять макромолекулы
в пределах
коммерческие сорбенты характеризуются
. Ддя разделения макромолекул в большом диапазоне М нужны сорбенты
с бимодальным и тримодальным распределением пор по размерам, обеспечивающие
линейную мол.-массовую калибровочную зависимость в диапазоне М = 102,5
- 106,5. Селективность С2 подобного сорбента (или
специально подобранной смеси сорбентов) естественно ниже, чем унимодального
сорбента, но ее делают максимальной для заданного диапазона
Макс. селективность достигается увеличением объема перового пространства
сорбента, у бимодального и тримодального сорбентов, кроме того,-оптимальным
распределением пор по размерам. Важно, чтобы при разделении смеси макромолекул
их наибольшая и наименьшая М находились в пределах ММИН
-
ММАКС характерных для данного сорбента. Иначе
по краям хроматограммы при VT и V0будут
выходить из колонки макромолекулы соответственно с М ММИНи
М ММАКС,
образуя ложные хроматографич. пики.
Механизм ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. Макромолекулы в растворе
представляют собой статистич. ансамбль (статистич. клубок). Их распределение
между пористым сорбентом и раствором контролируется изменением энергии Гиббса
при переходе макромолекулы из раствора в поры:
где - изменение
энтальпии макромолекулы вследствие взаимодействие ее сегментов с поверхностью сорбента
(матрицей геля); -
уменьшение энтропии при переходе макромолекулы из раствора в поры; Т - абс.
температура. Разделение макромолекул происходит в эксклюзионном режиме, когда ,
a Kd, зависящий от соотношения размеров макромолекул
и пор, меньше 1.
В критической условиях, когда при переходе
макромолекул из раствора в поры сорбента энергия Гиббса не изменяется
происходит полная компенсация потери энтропии макромолекулы благодаря увеличению
энтальпии:
т.е. переход макромолекулы из раствора в поры энергетически безразличен. При >0
и Kd> 1 наблюдается адсорбционная хроматография. В критической
условиях все макромолекулы, независимо от М, имеют Kd= 1
и, не разделяясь, выходят из колонки при VR = VТ
В эксклюзионной области при
макромолекулы с большей М сильнее вытесняются из пор, т. к. их энтропия
при переходе из раствора в поры уменьшается в большей степени.
На рис. 3 показаны кривые зависимости
от энергии взаимодействие
сегментов макромолекулы (см. Макромолекула) с поверхностью сорбента.
Эти кривые для макромолекул с разным числом сегментов (N)пересекаются
в точке критической энергии
Кривые левее точки относятся
к режиму ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. Отсюда ясно, что ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. включает значительной область энергетич.
зависимостей
где имеет
значения от
до Чем
меньше
тем больше изменение
при попадании макромолекулы в поры и, следовательно, разделение макромолекулы
более селективно.
Рис. 3. Зависимость
и для
разных N(N1 >N2>N3).
Гетерополимеры (сополимеры, функциональные
олигомеры) можно анализировать как с помощью ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. (когда у всех компонентов
), так и в условиях, когда у одного из компонентов
В этих (критических) условиях указанный компонент представляет хроматографич.
"невидимку" (его Kd не зависит от М). Последнее
позволяет по законам ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. анализировать ММР отдельных блоков блок-сополимера,
ММР функциональных олигомеров (отдельно для каждого типа функциональности),
а вблизи критической условий
получать с помощью ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. ММР олигомеров для каждого типа функциональности.
У макромолекул, несущих электрич. заряд
(полиэлектролитов), наблюдаются схожие, но более сильные изменения
в зависимости от рН и ионной силы элюента, Это происходит благодаря увеличению
размеров молекул полиэлектролитов при их диссоциации и проявлению кулоновских
взаимодействие между зарядами на больших расстояниях, чем в случае действия дисперсионных
или электростатич. сил. При увеличении рН выше 4 поверхность силикагелей приобретает
отрицательный заряд. Взаимод. с ней нейтральной макромолекулы остается
эксклюзионным (режим ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х.), поликатион адсорбируется благодаря ионообменной
сорбции, а полианион исключается из пор по законам ионной эксклюзии значительно
сильнее, чем при обычной эксклюзии.
Для подавления нежелательных для ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х.
явлений ионной эксклюзии и ионообменной сорбции модифицируют поверхность сорбентов
(для придания ей нейтрального заряда при рН > 4), увеличивают ионную силу
растворителя, ослабляя кулоновские взаимодействие, добавляют органическое растворители, смещая
тем самым рК полиэлектролита или изоэлектрич. точку у полиамфолитов.
С др. стороны, ионообменную сорбцию и ионную эксклюзию можно использовать
для разделения нейтральных макромолекул, полианионов и поликатионов одного
размера. Поскольку диссоциация полиэлектролитов увеличивается с разбавлением
их растворов, то при ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. макромолекулы на краях хроматографич. колонки, где
их концентрация мала, диссоциируют и движутся по колонке не по законам
Э. х., а по законам ионообменной сорбции и ионной эксклюзии в зависимости
от заряда поверхности сорбента и макромолекулы, что приводит к искажению формы
кривой зависимости V и М (рис. 4), а также позволяет диагностировать
наличие того или другого процесса.
Рис. 4. Эксклюзионная хроматография
нейтральных макромолекул (а) и полиэлектролитов: ионная эксклюзия
(б), ионообменная сорбция (в).
Эффекты, аналогичные ионообменной сорбции,
но только в более слабой степени, могут наблюдаться при гидрофобных взаимодействие
макромолекулярных сегментов с модифицированной гидрофобными радикалами
поверхностью сорбента или при электростатич. взаимодействие поверхностных силанольных
гидроксигрупп с функциональными группами полярных макромолекул. Все эти
эффекты должны подавляться при проведении ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х.
Техника ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. Для разделения макромолекул
в режиме ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. используют колонки двух типов: работающие в узком
= 102 и широком ( =
104 — 105 диапазонах. Колонки широкого диапазона
M
имеют широкое распределение пор сорбента по размерам (бимодальное, тримодальное).
Это распределение подбирается т. обр., чтобы при заданных степени линейности
калибровочной мол.-массовой зависимости и диапазона масс обеспечивалась
наиболее степень селективности С2. Можно также составлять
колонки для широкого диапазона М из колонок первого типа.
Разные типы полимеров требуют спец. растворителей
для ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. наиболее универсальный растворитель - ТГФ (для ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. полибутадиена,
полистирола, полиметакрилата, полиакрилатов). ТГФ имеет низкую вязкость,
однако требует очистки от пероксидов. Толуол, хлороформ и метилэтилкетон
также широко используют в ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. полимеров. Для ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. полиолефинов применяют
о-дихлорбензол и 1,2,4-трихлорбензол, а для полиакрилонитрила, полиэфиров
и полиамидов - м-крезол, фторированные спирты и кислоты.
Калибровку колонок в диапазоне масс 5
х 102- 1,5 х 107 осуществляют с помощью стандартных
узкодисперсных полистиролов. Выпускают также стандарты полиметилметакрилата,
полиизопрена, полиэтилена, полиэтиленгликоля и биополимеров (декстран и
др.).
ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. осуществляется с помощью хроматографа,
детектором служит спектрофотометр или проточный рефрактометр с предельной
чувствительностью 5 х 10-8 ед. рефракции, что соответствует
концентрации полимера 5-10-5 %. Обычно прибор работает при комнатной
температуре, однако ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. полиолефинов требует повышенной температуры, что способствует
увеличению селективности разделения, эффективности колонок и скорости анализа
вследствие уменьшения вязкости подвижной фазы. Совр. хроматографы комплектуются
автоматич. устройством для приготовления (растворение полимера, фильтрация
раствора) и ввода пробы, компьютером для интерпретации результатов анализа
ММР. Концентрацию пробы (с) следует уменьшать с ростом М полимера:
для полимера с М 104
с
= 0,25 % по массе, 3 х 104 - 2 х 104
с = 0,1%, 4 х 105 - 2 х 106 с = 0,05%, М>2
х 106с = 0,01%.
Применение комбинации рефрактометрич.
детектора и детектора многоуглового рассеяния света - фотометра позволяет
определять ММР и индексы разветвленности без калибровки хроматографа по
полимерным стандартам.
ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. применяют для исследования и выделения
полимеров в диапазоне М 102 - 2 х 107. Наилучшая
селективность достигнута для олигомеров - выделяют олигомергомологи с числом
звеньев до 10-15. Особенность ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. олигомеров состоит в том, что на хроматограмме
выходят пики для каждого из олигомергомологов, присутствующих в олигомере.
Поэтому можно определять ММР олигомера без калибровки колонок, если известна
М одного или несколько олигомергомологов.
При гель-фильтрации белков необходимо
принимать меры для предотвращения их адсорбции на сорбенте и не допускать
их денатурации. В отличие от ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ
х. синтетич. полимеров и олигомеров, используемой
главным образом в аналит. целях, гель-фильтрация белков - один из важнейших способов
их выделения и очистки. Разрешение белков по М при гель-фильтрации
ниже, чем при гель-проникающей хроматографии синтетич. полимеров, так как
для белков R М
1/3,
а для гибкоцепных полимеров R М
1/2.
Можно повысить чувствительность определения М белков методом гель-фильтрации,
если проводить ее в условиях денатурации: в о М растворе гуанидинхлорида (R
~ М 1/2) или в растворе додецилсульфоната Na (R ~ M).
Гель-фильтрацию открыли в 1959 Д. Порат
и П. Флодин, которые показали возможность фракционирования водорастворимых
макромолекул, в том числе белков, по мол. массе, в качестве сорбента они использовали
сшитый декстрановый гель. В 1964 Д. Мур предложил с помощью гель-проникающей
хроматографии определять ММР полимеров, фракционируя их на стирол-дивинилбензольном
геле.
Литература: Беленький Б.Г., Виленчик Л.
3., Хроматография полимеров, М., 1978; Нефедов П. П., Лавренко П. Н., Транспортные
методы в аналитической химии полимеров, Л., 1979; Энтелис С.Г., Евреинов
В. В., Кузаев А. И., Реакционноспособные олигомеры, М., 1985; Yau W.W.,
Kirkland J., Bly D., Modern size-exclusion liquid chromatog, raphy, N.Y.,
1979; Belenkii B.G., Vilenchik L.Z., Modem liquid chromatognphy of macromolecules,
Amst., 1983.
Б. Г. Беленький.
Химическая энциклопедия. Том 5 >> К списку статей |