химический каталог




ФОТОХИМИЯ

Автор Химическая энциклопедия г.р. Н.С.Зефиров

ФОТОХИМИЯ, наука о химический превращениях веществ под действием электромага, излучения - ближнего ультрафиолетового (~ 100-400 нм), видимого (400-800 нм) и ближнего инфракрасного (0,8 - 1,5 мкм).

Исследования химический действия излучения на различные вещества и попытки его теоретич. истолкования начинаются с кон. 18 в., когда Дж. Сенеби высказал предположение о том, что необходимая для достижения определенного химический эффекта продолжительность действия света обратно пропорциональна его интенсивности. В 19 в. параллельно происходило открытие новых реакций органическое и неорганическое веществ под действием света и физических-химический исследование механизма и природы фотохимический реакций. В 1818 T. Гротгус отверг гипотезу о тепловом действии света, предположил аналогию в воздействии на вещество света и электричества и сформулировал принцип, согласно которому причиной химический действия м. о. только тот свет, который поглощается веществом (закон Гротгуса). Дальнейшими исследованиями было установлено, что количество продукта фотохимический реакции пропорционально произведению интенсивности излучения на время его действия (P. Бунзен и Г. Роско, 1862) и что необходимо учитывать интенсивность только поглощенного, а не всего падающего на вещество излучения (Я. Вант-Гофф, 1904). Одно из важнейших достижений ФОТОХИМИЯ- изобретение фотографии (1839), основанной на фотохимический разложении галогенидов серебра.

Принципиально новый этап в развитии ФОТОХИМИЯ начался в 20 в. и связан с появлением квантовой теории и развитием спектроскопии. А. Эйнштейн (1912) сформулировал закон квантовой эквивалентности, согласно которому каждый поглощенный веществом фотон вызывает первичное изменение (возбуждение, ионизацию) одной молекулы или атома. Вследствие конкуренции химический реакций возбужденных молекул и процессов их дезактивации, а также обратного превращения нестабильных первичных продуктов в исходное вещество, химический превращения претерпевает, как правило, лишь некоторая доля возбужденных молекул. Отношение числа претерпевших превращение молекул к числу поглощенных фотонов называют квантовым выходом фотохимический реакции. Квантовый выход, как правило, меньше единицы; однако в случае, например, цепных реакций он может во много раз (даже на несколько порядков) превышать единицу.

В России важное значение имели в нач. 20 в. работы П.П. Лазарева в области фотохимии красителей и кинетики фотохимический реакций. В 40-е гг. А.Н. Терениным была высказана гипотеза о триплетной природе фосфоресцентного состояния, играющего важную роль в фотохимический реакциях, и открыто явление триплет-триплетного переноса энергии, составляющее основу одного из механизмов фотосенсибили-зации химический реакций.

Использование достижений квантовой химии, спектроскопии, химический кинетики, а также появление новых эксперим. методов исследования, в первую очередь методов изучения очень быстрых (до 10-12 с) процессов и короткоживущих промежуточные веществ, позволило развить детальные представления о законах взаимодействие фотонов с атомами и молекулами, природе возбужденных электронных состояний молекул, механизмах фотофизических и фотохимический процессов. Фотохимический реакции протекают, как правило, из возбужденных электронных состояний молекул, образующихся при поглощении фотона молекулой, находящейся в основном (стабильном) электронном состоянии. Если интенсивность света очень велика [более 1020 фотонов/ (с•см2)], то путем поглощения двух или более фотонов могут заселяться высшие возбужденные электронные состояния и наблюдаются двух- и многофотонные фотохимический реакции (см. Двухквантовые реакции, Многофотонные процессы). Возбужденные состояния не являются лишь "горячей" модификацией их основного состояния, несущей избыточную энергию, а отличаются от основного состояния электронной структурой, геометрией, химический свойствами. Поэтому при возбуждении молекул происходят не только количественные, но и качеств, изменения их химический поведения. Первичные продукты реакций возбужденных молекул (ионы, радикалы, изомеры и т.п.) чаще всего являются нестабильными и превращаются в конечные продукты в результате серии обычных термодинамически химический функций.

Для качеств. и количественное исследования продуктов используют всевозможные аналит. методы, в том числе оптический спектроскопию и радиоспектроскопию. Для определения дозы облучения и квантовых выходов применяют актинометрию. Св-ва короткоживущих возбужденных состояний обычно изучают методами оптический эмиссионной (флуоресцентной и фосфоресцентной) и абсорбционной спектроскопии. Особенно важное значение для исследования механизмов фотохимический реакций име ют импульсные методы: импульсный фотолиз, лазерная спектроскопия и др. (см. Люминесцентный анализ). Эти методы позволяют изучать кинетику первичных реакций возбужденных молекул, нестабильные промежуг. продукты и кинетику их превращений. Фотохимический методы применяют и для исследования обычных термодинамически реакций радикалов, ионов и др. промежуточные веществ. Важную информацию о механизмах ФОТОХИМИЯ дают радиоспекислотроскопич. методы, основанные на динамич. поляризации ядер и электронов (см. Химическая поляризация ядер).

В современной ФОТОХИМИЯ выделяют следующей разделы: ФОТОХИМИЯ малых молекул, позволяющую выяснить динамику элементарного акта в возбужденных электронных состояниях молекул; органическое и неорганическое ФОТОХИМИЯ, изучающие фотопревращения соответствующих химический со-ед. и методы фотохимический синтеза; механистич. (физических) ФОТОХИМИЯ, изучающую механизмы и кинетическая закономерности фотохимический реакций и тесно связанная с фотофизикой, химический кинетикой, квантовой химией, теорией строения молекул и др. разделами физических химии.

Важные практическое применения ФОТОХИМИЯ связаны с фотографией, фотолитографией и др. процессами записи и обработки информации, пром. и лабораторная синтезом органическое и неорганическое веществ (фото-нитрозирование циклогексана с целью получения капролакислотама, синтез витаминов группы D, напряженных полициклический структур и др.), синтезом и модификацией полимерных материалов (фотополимеризация, фотомодификация и фотодеструкция полимеров), квантовой электроникой (фотохимический лазеры, затворы, модуляторы), микроэлектроникой (фоторезисты), преобразованием солнечной энергии в химическую.

Фотохимический процессы играют очень важную роль в природе. Биол. фотосинтез обеспечивает существование жизни на Земле. Подавляющую часть информации об окружающем мире человек и большинство животных получают посредством зрения, основанного на фотоизомеризации родопсина, которая запускает цепь ферментативных процессов усиления сигнала и тем самым обеспечивает чрезвычайно высокую чувствительность вплоть до регистрации отдельных фотонов. Озон образуется в верх. слоях атмосферы из кислорода под действием коротковолнового (<180 нм) излучения Солнца по реакции:

Он поглощает излучение Солнца в области 200-300 нм, губительно действующее на живые организмы.

Литература: Теренин А.Н., Фотоника молекул красителей и родственных органических соединений, Л., 1967; Барлтроп Дж., Койл Дж., Возбужденные состояния в органической химии, пер. с англ., M., 1978; Окабе X., Фотохимия малых молекул, пер. с англ., M., 1981; Бугаенко Л.Т., Кузьмин М.Г., П о л а к Л.С., Химия высоких энергий, M., 1988. М.Г. Кузьмин.

Химическая энциклопедия. Том 5 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
складовка.ру
вр-г 250*150
посуда из цветного стекла купить
проектор и экран напрокат

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(28.02.2017)