химический каталог




Карбонильные соединения. Альдегиды и кетоны.

Автор Н.Е.Кузьменко


Органические соединения, в молекуле которых имеется карбонильная группа >С=0, называются карбонильными соединениями или оксосоединениями. Карбонильные соединения делятся на две большие группы — альдегиды и кетоны. Альдегиды содержат в молекуле карбонильную группу, связанную с атомом водорода, т.е. альдегидную группу —СН=O. Кетоны содержат карбонильную группу, связанную с двумя углеводородными радикалами, т.е. кетонную группу. В зависимости от строения углеводородных радикалов, альдегиды и кетоны бывают алифатическими, алициклическими и ароматическими. Изомерия альдегидов связана только со строением радикалов. 

Для альдегидов часто используют тривиальные названия, соответствующие названиям кислот (с тем же числом углеродных атомов), в которые альдегиды переходят при окислении. По систематической номенклатуре названия альдегидов образуют, прибавляя окончание -аль к названию родоначального углеводорода с самой длинной углеродной цепью, включающей карбонильную группу, от которой и начинают нумерацию цепи. Названия ароматических альдегидов производят от родоначальной структуры ряда — бензальдегида С6Н5—СН=0.


Изомерия кетонов связана со строением радикалов и с положением карбонильной группы в углеродной цепи. Кетоны часто называют по наименованию радикалов, связанных с карбонильной группой, или по систематической номенклатуре: к названию предельного углеводорода добавляют суффикс -он и указывают номер атома углерода, связанного с карбонильным кислородом. Нумерацию начинают с ближайшего к кетонной группе конца цепи. В молекуле кетона радикалы могут быть одинаковыми или разными. Поэтому кетоны, как и простые эфиры, делятся на симметричные и смешанные. Рассмотрим только алифатические карбонильные соединения.

Способы получения.
Исходными соединениями для получения альдегидов и кетонов могут быть углеводороды, галогенопроизводные, спирты или кислоты.
Гидратация алкинов. Взаимодействие алкинов с водой происходит в присутствии солей Hg2+ и дает ацетальдегид СН3СНО в случае ацетилена и различные кетоны в случае гомологов ацетилена.
Окисление спиртов. При окислении первичных спиртов образуются альдегиды, вторичных — кетоны.
Каталитическое окисление метана. Важным промышленным способом получения формальдегида (метаналя) является каталитическое окисление метана кислородом воздуха.

Физические свойства.
Оксосоединения не способны образовывать водородные связи, поэтому их температуры кипения значительно ниже, чем соответствующих спиртов. Например, температура кипения ацетальдегида 20 °С, тогда как этанола 78 °С. Температуры кипения кетонов обычно бывают несколько выше, чем изомерных им альдегидов. В обычных условиях только формальдегид является газом. Остальные оксосоединения — жидкости или твердые вещества. Формальдегид Н2СО имеет резкий неприятный запах. Средние гомологи ряда альдегидов обладают устойчивым характерным запахом (альдегидный запах). Высшие альдегиды (С7—С16) обладают приятным запахом и широко используются в парфюмерии.
Формальдегид хорошо растворим в воде, его 40%-ный водный раствор называют формалином. Ацетальдегид (этаналь) СН3СНО также хорошо растворим в воде. Ацетон (пропанон, или диметилкетон) — бесцветная жидкость, хорошо растворимая в воде, спирте и эфире. Это широко используемый органический растворитель, он хорошо растворяет жиры, смолы и многие другие органические вещества. 

Химические свойства. Химические свойства альдегидов и кетонов обусловлены присутствием в их молекуле активной карбонильной группы, в которой двойная связь сильно поляризована в силу большой злектроотрицательности кислорода (>С=0). В результате на карбонильном атоме углерода возникает заметный положительный заряд. Поэтому для альдегидов и кетонов характерны реакции присоединения по двойной связи С=0. Большинство из них протекает как нуклеофильное присоединение.
Кроме реакции присоединения по карбонильной группе, для альдегидов характерны также реакции с участием альфа-атомов водорода, соседних с карбонильной группой. Их реакционная способность связана с электроноакцепторным влиянием карбонильной группы, которое проявляется в повышенной полярности связи С—Н. Это приводит к тому, что альдегиды, в отличие от кетонов, легко окисляются. Их взаимодействие с аммиачным раствором оксида серебра является качественной реакцией на альдегиды.
Реакции нуклеофильного присоединения. Альдегиды и кетоны, обладая электрофильным центром, способны вступать во взаимодействие с нуклеофильными реагентами. Для оксосоединений наиболее характерны реакции, протекающие по механизму нуклеофильного присоединения, обозначаемому AN (от англ. addition nucleophilic).


Реакция с циановодородной (синильной) кислотой. Реакция имеет важное значение в органической химии. Во-первых, в результате реакции можно удлинить углеродную цепь; во-вторых, продукты реакции — гидроксинитрилы — служат исходными соединениями для синтеза гидроксикарбоновых кислот:


СН3—СН=O + Н—CN -> СН3—CH(CN)—ОН


Взаимодействие со спиртами. Альдегиды могут взаимодействовать с одной или двумя молекулами спирта, образуя соответственно полуацетали и ацетали. Полуацеталями называются соединения, содержащие при одном атоме углерода гидроксильную и алкоксильную группы. Ацетали — это соединения, содержащие при одном атоме углерода две алкоксильные группы:

структурная формула ацеталь и полуацеталь

Реакцию получения ацеталей широко используют в органических синтезах для «защиты» активной альдегидной группы от нежелательных реакций:

СН3—СН=O + 2СН3ОН <-> СН3—СН(ОСН3)—ОСН3 + Н2O

Присоединение гидросульфитов служит для выделения альдегидов из смесей с другими веществами и для получения их в чистом виде, поскольку полученное сульфопроизводное очень легко гидролизуется:

R—СН=0 + NaHS03 -> R—СН(ОН)—S03Na

Присоединение реактива Гриньяра. В органическом синтезе чрезвычайно часто используется реактив Гриньяра — одно из простейших металлоорганических соединений. При добавлении раствора галогеналкана в диэтиловом эфире к магниевой стружке легко происходит экзотермическая реакция, магний переходит в раствор и образуется реактив Гриньяра:

R—X + Mg -> R—Mg—X, где R — алкильный или арильный радикал, X — галоген


Взаимодействием реактива Гриньяра с формальдегидом можно получить практически любой первичный спирт (кроме метанола). Для этого продукт присоединения реактива Гриньяра гидролизуют водой:

Н2СО + RMgX -> R—СН2—О—MgX -> R—СН2—ОН

При использовании любых других алифатических альдегидов могут быть получены вторичные спирты:

Присоединение реактива Гриньяра


Взаимодействием реактивов Гриньяра с кетонами получают третичные спирты:

(СН3)2С=0 + R—MgX -> (CH3)2C(R)-0-MgX -> (CH3)2C(R)-OH


Восстановление оксосоединений. См. восстановление карбонильных соединений в статье одноатомные алифатические спирты.

Реакции окисления. Альдегиды и кетоны по-разному относятся к действию окислителей. Альдегиды легко (значительно легче, чем спирты) окисляются в соответствующие карбоновые кислоты. Для их окисления можно использовать такие мягкие окислители, как оксид серебра и гидроксид меди (II). Кетоны к действию окислителей инертны, в частности они не окисляются кислородом воздуха. Кетоны реагируют только с очень сильными окислителями, способными разорвать углерод-углеродные связи в их молекуле.

Одной из качественных реакций для обнаружения альдегидной группы является реакция «серебряного зеркала» — окисление альдегидов оксидом серебра. Оксид серебра всегда готовят непосредственно перед опытом, добавляя к раствору нитрата серебра раствор гидроксида аммония:

AgN03 + NH4OH -> NH4NO3 + AgOH
2AgOH -> Ag20 + H20
Ag20 + 4NH3 + H20 -> 2[Ag(NH3)2]OH

В растворе аммиака оксид серебра образует комплексное соединение, при действии которого на альдегид происходит окислительно-восстановительная реакция. Альдегид окисляется в соответствующую кислоту (точнее, в ее аммонийную соль), а комплексный катион восстанавливается до металлического серебра, которое дает блестящий налет на стенках пробирки — «серебряное зеркало»:

СН3—СН=0 + 2[Ag(NH3)2]OH  -> CH3COONH4 + 2Ag + 3NH3 + H20

Другая качественная реакция на альдегиды заключается в окислении их гидроксидом меди (II). При окислении альдегида светло-голубой гид роке ид меди (II) превращается в желтый гид роке ид меди (I) при комнатной температуре. Если подогреть раствор, то гидроксид меди (I) превращается в оксид меди (I) красного цвета, который плохо растворим в воде и выпадает в осадок:

СН3—СН=0 + 2Сu(ОН)2 -> СН3СООН + 2СuОН + Н20
2CuOH -> Cu20 + Н20

7. Реакции поликонденсации — см. схему реакции фенола с формальдегидом.


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
циркуляционный насос cre 20-2, grundfos
ноутбук игровой недорогой
купить медицинскую справку для водителе
маэстро билеты

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(17.08.2017)