химический каталог




УГЛЕВОДЫ

Автор Химическая энциклопедия г.р. Н.С.Зефиров

УГЛЕВОДЫ (сахара), обширная группа полигидроксикарбо-нильных соединений, входящих в состав всех живых организмов; к УГЛЕВОДЫ относят также многие производные, получаемые при химический Mо дификации этих соединение путем окисления, восстановления или введения различные заместителей.

Термин "углеводы" возник потому, что первые известные представители УГЛЕВОДЫ по составу отвечали формуле CmH2nOn (угле-род+вода); впоследствии были обнаружены природные УГЛЕВОДЫ с другими элементным составом.

Классификация и распространение. У. принято делить на моносахариды, олигосахариды и полисахариды.

Моносахариды обычно представляют собой полигид-роксиальдегиды (альдозы) или полигидроксикетоны (кетозы) с линейной цепью из 3-9 атомов С, каждый из которых (кроме карбонильного) связан с группой ОН. Простейший моноса-харид, глицериновый альдегид, содержит один асим. атом С и известен в виде двух оптический антиподов (D и L). Прочие моносахариды имеют несколько асим. атомов С; их рассматривают как производные D- или L-глицеринового альдегида и относят к D- или L-ряду в соответствии с абс. конфигурацией асим. атома С, наиболее удаленного от карбонильной группы. Различия между изомерными моносахаридами в каждом ряду обусловлены относит, конфигурацией остальных асим. центров.

Характерное свойство моносахаридов в растворах - мутаротация, т. е. установление таугомерного равновесия между ациклический альдегидо- или кетоформой, двумя пятичленными (фураноз-ными) и двумя шестичленными (пиранозными) полуацеталь-ными формами. Две пиранозы (как и две фуранозы) отличаются друг от друга конфигурацией (a или b) нового асим. (аномерного) центра, возникающего из карбонильного атома С при циклизации.

Полуацетальный (гликозидный) гидроксил циклический форм моносахаридов резко отличается от прочих групп ОН моно-сахарида значительно большей склонностью к реакциям нукле-оф. замещения. Такие реакции приводят к образованию глико-зидов (остаток нуклеофила в гликозиде - например спирта. меркаптана - носит назв. агликон). В тех случаях, когда агликоном служит др. молекула моносахарида, образуются олиго- и полисахариды. При этом каждый остаток моносахарида может в принципе иметь пиранозную или фуранозную форму, a- или b-конфигурацию гликозидного центра и быть связанным с любой из гидроксильных групп соседнего моносахарида. Поэтому число различные по строению полимерных молекул, которые теоретически можно построить даже из остатков только одного моносахарида, представляет собой астемпературономич. величину.

К наиб, обычным и распространенным в природе моноса-харидам относят D-глюкозу, D-галактозу, D-маннозу, D-фрукислотозу, D-ксилозу, L-арабинозу и D-рибозу. Из представителей др. классов моносахаридов часто встречаются: 1) дезоксиса-хара, в молекулах которых одна или несколько групп ОН заменены атомами H (например, L-рамноза, L-фукоза, 2-дезокси-D-рибоза); 2) аминосахара, где одна или несколько групп ОН заменены на аминогруппы (например, 2-амино-2-дезокси-D-глюкоза, или D-глюкозамин); 3) многоатомные спирты (полиолы, альди-ты), образующиеся при восстановлении карбонильной группы моносахаридов (D-сорбит из D-глюкозы, D-маннит из D-маннозы, и др.); 4) уроно-вые кислоты - альдозы, у которых группа CH2OH окислена в карбоксильную (например, D-глюкуроновая кислота); 5) разветвленные сахара, содержащие нелинейную цепь углеродных атомов (например, апиоза, или 3-С- гидроксиметил-D-глицеро-тетроза; формула I); 6) высшие сахара с длиной цепи более шести атомов С (например, D-седогеп-тулоза и сиаловые кислоты; формулы см. соответственно в статьях Пентозо-фосфатный цикл и Моносахариды}.

За исключением D-глюкозы и D-фруктозы свободный моносахариды встречаются в природе редко. Обычно они входят в состав разнообразных гликозидов, олиго- и полисахаридов и может быть получены из них после кислотного гидролиза. Разработаны многочисленные методы химический синтеза редких моносахаридов исходя из более доступных.

Олигосахариды содержат в своем составе от 2 до 10-20 моносахаридных остатков, связанных гликозидными связями. Наиб, распространены дисахариды, выполняющие функцию запасных B-B: сахароза в растениях, трегалоза в насекомых и грибах, лактоза в молоке млекопитающих. Известны многочисленные гликозиды олигосахаридов, к к-рым относят различные физиологически активные вещества, напр, гликозиды сердечные, некоторые сапонины (в растениях), многие антибиотики (в грибах и бактериях), гликолипиды.

Полисахариды- высокомол. соединение, линейные или разветвленные молекулы которых построены из остатков моносахаридов, связанных гликозидными связями. В состав полисахаридов могут входить также заместители неуглеводной природы (остатки алифатич. кислот, фосфат, сульфат). В свою очередь цепи высших олигосахаридов и полисахаридов могут присоединяться к полипептидным цепям с образованием гликопротеинов.

Особую группу составляют биополимеры, в молекулах которых остатки полиолов, гликозилполиолов, нуклеозидов или моно- и олигосахаридов соединены не гликозидными, а фос-фодиэфирными связями. К этой группе относят тейхоевые кислоты бактерий, компоненты клеточных стенок некоторых дрожжей, а также нуклеиновые кислоты, в основе которых лежит поли-D-рибозофосфатная (РНК) или поли-2-дезок-си-D-рибозофосфатная (ДНК) цепь.

Физико-химические свойства. Обилие полярных функциональных групп в молекулах моносахаридов приводит к тому, что эти вещества легко растворим в воде и не растворим в малополярных органических растворителях. Способность к таутомерным превращениям обычно затрудняет кристаллизацию моно- и олигосахаридов, однако если такие превращения невозможны (например, как в гликозидах и невосстанавливающих олигосахаридах типа сахарозы), то вещества кристаллизуются легко. Mн. гликозиды с малополярными агликонами (например, сапонины) проявляют свойства ПАВ.

Полисахариды - гидрофильные полимеры, многие из них образуют высоковязкие водные растворы (растит, слизи, гиалуроно-вая кислота; формулу последней см. в ст. Мукополисахариды), а в ряде случаев (в результате своеобразной межмол. ассоциации) - прочные гели (агар, алъгиновые кислоты, каррагинаны, пектины). Некоторые полисахариды образуют высокоупорядоченные надмолекулярные структуры, препятствующие гидратации отдельных молекул; такие полисахариды (например, хитин, целлюлоза)не растворим в воде.

Биологическая роль. Функции углеводов в живых организмах чрезвычайно многообразны. В растениях моносахариды являются первичными продуктами фотосинтеза и служат исходными соединение для биосинтеза гликозидов и полисахаридов, а также др. классов B-B (аминокислот, жирных K-T, фенолов и др.). Эти превращения осуществляются ферментами, субстратами для которых служат, как правило, богатые энергией фос-форилир. производные Сахаров, главным образом нуклеозиддифосфат-сахара.

УГЛЕВОДЫ запасаются в растениях (в виде крахмала), животных, бактериях и грибах (в виде гликогена), где служат энергетич. резервом. Источником энергии являются реакции расщепления глюкозы, образующейся из этих полисахаридов, по гликоли-тич. или окислит. пути (см. Гликолиз). В виде гликозидов в растениях и животных осуществляется транспорт различные метаболитов. Полисахариды и более сложные углеводсодержащие полимеры выполняют в живых организмах опорные функции. Жесткая клеточная стенка у высших растений представляет собой сложный комплекс из целлюлозы, гемицеллюлоз и пектинов. Армирующим полимером в клеточной стенке бактерий служат пептидогликаны (муреины), а в клеточной стенке грибов и наружных покровах членистоногих - хитин. В организме животных опорные функции выполняют протео-гликаны соединит, ткани, углеводная часть молекул которых представлена сульфатир. мукополисахаридами. Эти вещества участвуют в обеспечении специфический физических-химический CB-B таких тканей, как кости, хрящи, сухожилия, кожа. Будучи гидрофильными полианионами, эти полисахариды способствуют также поддержанию водного баланса и избират. ионной проница емости клетоколо Аналогичные функции в морских многоклеточных водорослях выполняют сульфатир. галактаны (красные водоросли) или более сложные сульфатир. гетерополисахари-ды (бурые и зеленые водоросли); в растущих и сочных тканях высших растений эту функцию выполняют пектины.

Особенно ответственна роль сложных УГЛЕВОДЫ в образовании клеточных поверхностей и мембран и придании им специфический свойств. Так, гликолипиды - важнейшие компоненты мембран нервных клеток и оболочек эритроцитов, а липополисахариды -наружной оболочки грамотрицат. бактерий. УГЛЕВОДЫ клеточной поверхности часто определяют специфичность иммунологич. реакций (групповые вещества крови, бактериальные антигены) и взаимодействие клеток с вирусами. Углеводные структуры принимают участие и в др. высокоспецифический явлениях клеточного взаимодействия, таких, как оплодотворение, узнавание клеток при тканевой дифференциации, отторжение чужеродных тканей и т. д.

Практическое использование. У. составляют главную часть пищевая рациона человека, в связи с чем широко используются в пищевая и кондитерской промышлености (крахмал, сахароза и др.). Кроме того, в пищевая технологии применяют структурир. вещества полисахаридной природы, не имеющие сами по себе пищевая ценности,- гелеобразователи, загустители, стабилизаторы суспензий и эмульсий (альгинаты, агар, пектины, растит. галактоманнаны и др.).

Превращения моносахаридов при спиртовом брожении лежат в основе процессов получения этанола, пивоварения, хлебопечения; др. виды брожения позволяют получать из Сахаров биотехнол. методами глицерин, молочную, лимонную, глюконовую кислоты и многие др. вещества.

Глюкозу, аскорбиновую кислоту, углеводсодержащие антибиотики, гепарин широко применяют в медицине. Целлюлоза служит основой для получения вискозного волокна, бумаги, некоторых пластмасс, BB и др. Сахарозу и растит, полисахари-ды рассматривают как перспективное возобновляемое сырье, способное в будущем заменить нефть в пром. органическое синтезе. Моносахариды используют в качестве доступных хиральных исходных соединений для синтеза сложных природные B-B неуглеводной природы.

Литература: Химия углеводов, M., 1967; Общая органическая химия, пер. с англ., т. 11, M., 1986, с. 127-299. А. И. Усов.

Химическая энциклопедия. Том 5 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
Кликните, закажите с промокодом "Галактика" - 300 руб скидка - Acer Aspire S5-371-33RL - офис продаж на Дубровке.

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(24.01.2017)