химический каталог




Сверхтяжелые элементы на островке устойчивости

Автор К.Гофман

Теоретическое и экспериментальное изучение устойчивости ядра дало советским физикам повод для пересмотра применявшихся до сих пор методов получения тяжелых трансуранов. В Дубне решили пойти новыми путями и взять в качестве мишени свинец и висмут.

Ядро, как и атом в целом, имеет оболочечное строение. Особой устойчивостью отличаются атомные ядра, содержащие 2-8-20- 28-50-82-114-126-164 протонов (то есть ядра атомов с таким порядковым номером) и 2-8-20-28-50-82-126-184-196- 228-272-318 нейтронов, вследствие законченного строения их оболочек. Только недавно удалось подтвердить эти воззрения расчетами с помощью ЭВМ. Такая необычная устойчивость бросилась в глаза, прежде всего, при изучении распространенности некоторых элементов в космосе. Изотопы, обладающие этими ядерными числами, называют магическими. Изотоп висмута [209]Bi, имеющий 126 нейтронов, представляет такой магический нуклид. Сюда относятся также изотопы кислорода, кальция, олова. Дважды магическими являются: для гелия - изотоп [4]Не (2 протона, 2 нейтрона), для кальция - [48]Са (20 протонов, 28 нейтронов), для свинца - [208]Pb (82 протона, 126 нейтронов). Они отличаются совершенно особой прочностью ядра.

Используя источники ионов нового типа и более мощные ускорители тяжелых ионов - в Дубне были спарены агрегаты У-200 и У-300, группа Г. Н. Флерова и Ю. Ц. Оганесяна вскоре стала располагать потоком тяжелых ионов с необычайной энергией. Чтобы достичь слияния ядер, советские физики выстреливали ионами хрома с энергией 280 МэВ в мишени из свинца и висмута. Что могло получиться? В начале 1974 года атомщики в Дубне зарегистрировали при такой бомбардировке 50 случаев, указывающих на образование 106-го элемента, который, однако, распадается уже через 10[-2] с. Эти 50 атомных ядер образовались по схеме: [208]Pb + [51]Cr = [259]X Немного позднее Гиорсо и Сиборг из лаборатории Лоуренса в Беркли сообщили, что они синтезировали изотоп нового, 106-го, элемента с массовым числом 263 путем обстрела калифорния-249 ионами кислорода в аппарате Super-HILAC.

Какое имя будет носить новый элемент? Откинув прежние разногласия, обе группы в Беркли и Дубне, соперничающие в научном соревновании, пришли на этот раз к единому мнению. О названиях говорить еще рано, сказал Оганесян. А Гиорсо дополнил, что решено воздержаться от всяких предложений о наименовании 106-го элемента вплоть до прояснения ситуации.

К концу 1976 года дубнинская лаборатория ядерных реакций закончила серию опытов по синтезу 107-го элемента; в качестве исходного вещества дубнинским "алхимикам" послужил "магический" висмут-209. При обстреле ионами хрома с энергией 290 МэВ он превращался в изотоп 107-го элемента: [209]Bi + [54]Cr = [261]X + 2n 107-й элемент самопроизвольно распадается с периодом полураспада 0,002 с и, кроме того, излучает альфа-частицы.

Найденные для 106- и 107-го элементов периоды полураспада 0,01 и 0,002 с заставили насторожиться. Ведь они оказались на несколько порядков больше, чем предсказывали расчеты ЭВМ. Быть может, на 107-й элемент уже заметно влияла близость последующего магического числа протонов и нейтронов - 114, повышающая устойчивость? Если это так, то была надежда получить и долгоживущие изотопы 107-го элемента, например обстрелом берклия ионами неона. Расчеты показали, что образующийся по этой реакции изотоп, богатый нейтронами, должен был бы обладать периодом полураспада, превышающим 1 с.

Это позволило бы изучить химические свойства 107-го элемента - экарения.

Самый долгоживущий изотоп первого трансурана, элемента 93 - нептуний-237,- обладает периодом полураспада 2 100 000 лет; самый устойчивый изотоп 100-го элемента - фермий-257- только 97 дней. Начиная с 104-го элемента периоды полураспада составляют лишь доли секунды. Поэтому, казалось, что нет абсолютно никакой надежды обнаружить эти элементы. Для чего же нужны дальнейшие исследования? Альберт Гиорсо, ведущий специалист США по трансуранам, высказался однажды в этой связи: "Причиной для продолжения поисков дальнейших элементов является просто-напросто удовлетворение человеческого любопытства - а что же происходит за следующим поворотом улицы?" Однако это, конечно, не просто научное любопытство. Гиорсо давал все же понять, как важно продолжение такого фундаментального исследования.

В 60-е годы теория магических ядерных чисел приобретала все большее значение. В "море неустойчивости" ученые отчаянно пытались найти спасительный "островок относительной устойчивости", на который могла бы твердо опереться нога исследователя атома. Хотя этот островок до сих пор еще не открыт, "координаты" его известны: элемент 114, экасвинец, считается центром большой области устойчивости. Изотоп-298 элемента 114 уже давно является особым предметом научных споров, ибо, имея 114 протонов и 184 нейтрона, он представляет собой одно из тех дважды магических атомных ядер, которым предсказывают длительное существование, Однако, что же означает длительное существование? Предварительные расчеты показывают: период полураспада с выделением альфа-частиц колеблется от 1 до 1000 лет, а по отношению к самопроизвольному делению - от 108 до 10[16] лет.

Такие колебания, как указывают физики, объясняются приближенностью "компьютерной химии".

Весьма обнадеживающие значения периодов полураспада предсказывают для следующего островка устойчивости - элемента 164, двисвинца. Изотоп 164-го элемента с массовым числом 482 - также дважды магический: его ядро образуют 164 протона и 318 нейтронов.

Науку интересуют и просто магические сверхтяжелые элементы, как, например, изотоп-294 элемента 1 10 или изотоп-310 элемента 126, содержащие по 184 нейтрона. Диву даешься, как исследователи вполне серьезно жонглируют этими воображаемыми элементами, будто они уже существуют. Из ЭВМ извлекаются все новые данные и сейчас уже определенно известно, какими свойствами - ядерными, кристаллографическими и химическими - должны обладать эти сверхтяжелые элементы. В специальной литературе накапливаются точные данные для элементов, которые люди, быть может, откроют лет через 50.

В настоящее время атомщики путешествуют по морю неустойчивости в ожидании открытий. За их спинами осталась твердая земля: полуостров с естественными радиоактивными элементами, отмеченный возвышенностями тория и урана, и далеко простирающаяся твердая земля со всеми прочими элементами и вершинами свинца, олова и кальция. Отважные мореплаватели уже давно находятся в открытом море. На неожиданном месте они нашли отмель: открытые 106 и 107-й элементы устойчивее, чем ожидалось.

В последние годы мы долго плыли по морю неустойчивости, рассуждает Г.

Н. Флеров, и вдруг, в последний момент, почувствовали землю под ногами.

Случайная подводная скала? Либо песчаная отмель долгожданного островка устойчивости? Если правильно второе, то у нас есть реальная возможность создать новую периодическую систему из устойчивых сверхтяжелых элементов, обладающих поразительными свойствами.

После того, как стала известна гипотеза об устойчивых элементах вблизи порядковых номеров 114, 126, 164, исследователи всего мира набросились на эти "сверхтяжелые" атомы. Некоторые из них, с предположительно большими периодами полураспада, надеялись обнаружить на Земле или в Космосе, по крайней мере в виде следов. Ведь при возникновении нашей Солнечной системы эти элементы так же существовали, как и все прочие.

Следы сверхтяжелых элементов - что следует под этим понимать? В результате своей способности самопроизвольно делиться на два ядерных осколка с большой массой и энергией эти трансураны должны были бы оставить в находящейся по соседству материи отчетливые следы разрушения. Подобные следы можно увидеть в минералах под микроскопом после их травления. С помощью такого метода следов разрушения можно в настоящее время проследить существование давно погибших элементов. Из ширины оставленных следов можно оценить и порядковый номер элемента - ширина трека пропорциональна квадрату заряда ядра. "Живущие" еще сверхтяжелые элементы надеются также выявить, исходя из того, что они многократно испускают нейтроны. При самопроизвольном процессе деления эти элементы испускают до 10 нейтронов.

Следы сверхтяжелых элементов искали в марганцевых конкрециях из глубин океана, а также в водах после таяния ледников полярных морей. До сих пор безрезультатно. Г. Н. Флеров с сотрудниками исследовал свинцовые стекла древней витрины XIV века, лейденскую банку XIX века, вазу из свинцового хрусталя XVIII века. Сначала несколько следов самопроизвольного деления указали на экасвинец- 114-й элемент. Однако, когда дубнинские ученые повторили свои измерения с высокочувствительным детектором нейтронов в самом глубоком соляном руднике Советского Союза, то положительного результата не получили. На такую глубину не могло проникнуть космическое излучение, которое, по-видимому, вызвало наблюдавшийся эффект.

В 1977 году профессор Флеров предположил, что он наконец обнаружил "сигналы нового трансурана" при исследовании глубинных термальных вод полуострова Челекен в Каспийском море. Однако число зарегистрированных случаев было слишком мало для однозначного отнесения. Через год группа Флерова зарегистрировала уже 150 спонтанных делений в месяц. Эти данные получены при работе с ионообменником, заполненным неизвестным трансураном из термальных вод. Флеров оценил период полураспада присутствовавшего элемента, который он еще не смог выделить, миллиардами лет.

Другие исследователи пошли иными путями. Профессор Фаулер и его сотрудники из Бристольского университета предприняли эксперименты с аэростатами на большой высоте. С помощью детекторов малых количеств ядер были выявлены многочисленные участки с зарядами ядер, превышающими 92.

Английские исследователи считали, что один из следов указывает даже на элементы 102...108. Позднее они внесли поправку: неизвестный элемент имеет порядковый номер 96 (кюрий).

Как же попадают эти сверхтяжелые частички в стратосферу земного шара? До настоящего времени выдвинуто несколько теорий. Согласно им, тяжелые атомы должны возникать при взрывах сверхновых звезд либо при других астрофизических процессах и достигать Земли в виде космического излучения или пыли - но только через 1000 - 1 000 000 лет. Эти космические осадки в настоящее время ищут как в атмосфере, так и в глубинных морских отложениях.

Значит, сверхтяжелые элементы могут находиться в космическом излучении? Правда, по оценке американских ученых, предпринявших в 1975 году эксперимент "Скайлэб", такая гипотеза не подтвердилась. В космической лаборатории, облетавшей Землю, установили детекторы, поглощающие тяжелые частички из космоса; обнаружены были лишь треки известных элементов. Лунная пыль, доставленная на Землю после первой посадки на Луну в 1969 году, не менее тщательно обследовалась на присутствие сверхтяжелых элементов. Когда нашли следы "долгоживущих" частичек до 0,025 мм, некоторые исследователи сочли, что их можно приписать элементам 110- 119.

Аналогичные результаты дали исследования аномального изотопного состава благородного газа ксенона, содержащегося в различных образцах метеоритов.

Физики высказали мнение, что этот эффект можно объяснить лишь существованием сверхтяжелых элементов. Советские ученые в Дубне, которые проанализировали 20 кг метеорита Алленде, упавшего в Мексике осенью 1969 года, в результате трехмесячного наблюдения смогли обнаружить несколько спонтанных делений.

Однако после того, как было установлено, что "природный" плутоний-244, некогда являвшийся составной частью нашей Солнечной системы, оставляет совершенно сходные следы, интерпретацию стали проводить осторожнее.


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
сколько стоит композиция на стол молодоженов
Компания Ренессанс лестницы на заказ в москве недорого - доставка, монтаж.
часы 24 часа циферблат
регулирующая заслонка vkdr-ф125

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(08.12.2016)