химический каталог




ТРАНСПОРТНЫЕ РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ

Автор Химическая энциклопедия г.р. Н.С.Зефиров

ТРАНСПОРТНЫЕ РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (тРНК, трансферные РНК, адапторные РНК), низкомолекулярные РНК, осуществляющие перенос аминокислотных остатков к матричной РНК (мРНК) при трансляции (синтезе полипептидяой цепи на мРНК-матрице в рибосомах).

Присутствуют в цитоплазме и митохондриях. Цитоплаз-матич. тРНК состоят из одной полирибонуклеотидной цепи, включающей 74-95 нуклеотидных остатков (молекулярная масса 24-31 тысяч), митохондриальные тРНК немного короче. Для всех молекул тРНК характерно присутствие остатка фосфорной кислоты на 5"-конце (см. Нуклеиновые кислоты) нуклеотидной цепи (фосфорилирован 5"-гидроксил), наличие последовательности ССА—ОН (С-остаток цитидина, А-аденозина) на 3"-конце и несколько консервативных нуклеотидных остатков, рассеянных вдоль цепи и занимающих во всех тРНК одни и те же положения.

Отличит. особенность тРНК-присутствие в молекуле минорных нуклеозидов (миноров), общее число разновидностей которых в разных тРНК св. 50, а в одной молекуле тРНК их доля может достигать 25%. Они образуются путем метилирования, гидрирования и др. превращений обычных нуклеотидных звеньев в ходе посттранскрипц. модификации тРНК под действием соответствующих ферментов. Большинство миноров влияет на стабильность пространственной структуры и(или) на адапторную функцию тРНК-способность каждой тРНК узнавать свой кодон (участок мРНК из трех нуклеотидных остатков, кодирующий определенную аминокислоту; см. Генетический код). На присоединение к тРНК аминокислот (акцепторную функцию) миноры, как правило, не влияют.

Более половины пуриновых и пиримидиновых оснований тРНК с помощью водородных связей образуют внутрицепо-чечные пары по принципу комплементарности (A-U, G-C, G-U; U и G-соответственно остатки уридина и гуанозина), формируя 4 двухспиральных участка. Эти короткие спирали чередуются с участками неспаренных оснований, в результате чего нуклеотидная цепь образует 3 петли. Таким образом формируется вторичная структура, получившая назв. клеверного листа (см. рис.). В ней выделяют: акцепторную ветвь (стебель, черешок) с универсальной 3"-концевой последовательностью, служащей акцептором (местом прикрепления) остатка аминокислоты; дигидроуридиловую ветвь (шпильку), варьирующую по числу входящих в ее состав нуклеотидов и содержащую до 3 остатков дигидро-уридина (DHU); антикодоновую ветвь (шпильку) с петлей в 7 нуклеотидных остатков, в центре которой находится анти-кодон (тринуклеотид, комплементарный кодону мРНК и обусловливающий специфичность тРНК к этому кодону); тимидилпсевдоуридиловую ветвь, или Ty-шпильку, содержащую минорные нуклеозиды риботимидин и псевдоури-дин.

Кроме того, у всех тРНК между Ty-шпилькой и акцепторным стеблем имеется вариабельная петля (V-петля). Число составляющих ее нуклеотидов у различные тРНК варьирует от 3 до 20. Если петля длинная, то формируется дополнительной пятый двухспиральный участок тРНК, как, например, у дрожжевых тРНКSer и тРНКLeu (в верхнем индексе-условные обозначения аминокислот, к к-рым специфичны данные тРНК; букв. обозначения см. в ст. Аминокислоты).


Нуклеотидная последовательность и вторичная структура дрожжевой алани-новой тРНК; линии между антипараллельными участками обозначают водородные связи между комплементарными парами оснований (р-остаток фосфорной кислоты); молекула содержит семь минорных нуклеозидов: y-псевдо-уридин, 1-инозин, Температуриботимидин. DHU-5,6-дигидроуридин, m1I-1-метили-нозин, m1G-1-метилгуанозин, m2G-N2-диметилгуанозин: 1-акцепторная ветвь, 2-Тy-шпилька, S-V-петля, 4-антикодонная ветвь, 5-дигидроуриди-ловая ветвь.

Все тРНК имеют сходную пространственную укладку цепи, напоминающую лат. букву L. Акцепторная и тими-дилпсевдоуридиловая ветви расположены по одной оси, формируя непрерывную двойную спираль, состоящую из 12 пар нуклеотидных остатков; антикодоновая и дигидроури-диловая ветви располагаются также по одной оси, формируя вторую двойную спираль, включающую 9 пар нуклеотидных остатков. Эти два спиральных участка располагаются под углом около 90° друг к другу. Трехмерная структура поддерживается нековалентными связями между Ty- и DHU-шпильками, а также др. взаимодействие, в т.ч. с ионами Mg2+. Конформация тРНК в растворе в целом соответствует ее конформации в кристалле. Важная особенность структуры тРНК заключается в том, что антикодон, находящийся в центре полинуклеотидной цепи и на одном из концов "L", доступен для контактов с мРНК.

В присут. АТФ, ионов Mg2+ и аминоацил-тРНК-синтетаз к группе 3"-ОН 3"-концевого аденозина тРНК присоединяется остаток аминокислоты с образованием аминоацил-тРНК. Аминоацил-тРНК в рибосоме с помощью антико-дона комплементарно связывается с соответствующим ко-доном мРНК. тРНК, акцептирующие различные аминокислоты, имеют разные последовательности оснований, благодаря чему синтетазы легко их узнают. Через взаимодействие кодон-антикодон осуществляется перевод нуклеотидной последовательности мРНК в специфический аминокислотную Последовательность синтезируемой полипептидной цепи.

Ошибка в узнавании аминокислоты своей тРНК при синтезе аминоацил-тРНК не может быть исправлена на последующих этапах белкового синтеза; последовательность аминокислотных остатков в синтезируемой полипептидной цепи определяется мРНК и аминоацил-тРНК, взаимодействующими в рибосоме, а не природой аминокислотного остатка, связанного с тРНК. Для большинства тРНК с короткой V-петлей важную роль при взаимном узнавании фермента и тРНК играет антикодон, для тРНК с длинной V-петлей-двухспиральные участки. При узнавании происходят взаимные конформационные изменения тРНК и фермента.

Как правило, каждая аминокислота имеет несколько соответствующих ей разновидностей тРНК, незначительно различающихся по первичной структуре и называют изоакцептор-ными; их подразделяют на мажорные (доминирующие) и минорные (малочисленные). Структурные различия обусловлены заменами несколько нуклеотидов (или пар нуклео-тидов) в различные частях молекулы (в т.ч. в антикодоне) и существенно не отражаются на укладке цепей. Для считывания разных кодонов мРНК, соответствующих одной и той же аминокислоте, используются изоакцепторные тРНК с разными антикодонами. Для многие аминокислот число соответствующих им изоакцепторных тРНК с разными антикодонами гораздо меньше, чем общее число кодонов (например, 24 митохондриальных тРНК достаточно для узнавания 61-62 смысловых кодонов мРНК). Из этого следует, что одна и та же тРНК может узнавать несколько кодонов, кодирующих одну и ту же аминокислоту, но различающихся по одному нуклеотиду.

Число генов, кодирующих тРНК для одной и той же аминокислоты, может различаться у разных организмов более чем на порядоколо Общее число генов тРНК в различные организмах сильно варьирует (например, у кишечной палочки Escherichia coli их около 70, у шпорцевой лягушки Xenopus laevis около 7 тысяч, у человека св. 1 тысяч). При транскрипции (синтез РНК на ДНК-матрице) генов тРНК с помощью фермента РНК-полимеразы III образуются предшественники тРНК (пре-тРНК). Дальнейшее их превращение в тРНК включает ряд ферментативных реакций, приводящих к уменьшению размеров молекул и модификации некоторых нуклеозидов. В-генах тРНК эукариот функционально важный 3"-концевой триплет не кодирован-он достраивается посттранскрипционно с помощью фермента тРНК-нуклео-тидилтрансферазы.

Помимо акцепторно-адапторной функции в белковом синтезе, многие тРНК выполняют роль затравки при обратной транскрипции (синтезе ДНК на РНК-матрице) благодаря комплементарности 3"-конца тРНК (17-20 нуклеотидов) и участка РНК ретровирусов, а также др. ретротранспозонов. На 3"-концах РНК многие вирусов растений присутствуют тРНК-подобные структуры, обладающие акцепторной активностью. Некоторые тРНК участвуют в биосинтезе пеп-тидогликанов (компонентов внешний оболочки некоторых бактерий), в переносе аминокислот через внешний мембрану клеток, в регуляции биосинтеза ряда аминокислот, в посттрансляционной модификации белков (перенос аминокислотного остатка от аминоацил-тРНК на N-конец полипептидной цепи под действием ферментов аминоацил-тРНК-протеин трансфераз), а также во внутриклеточной деградации белков. Имеются данные об участии тРНК как кофактора в реакции восстановления глутаминовой кислоты при биосинтезе хлорофилла. Успехи в изучении структуры и функции тРНК сыграли исключит. роль в понимании общих принципов структурной организации нуклеиновых кислот, в познании биосинтеза белков.

В 1955 Ф. Крик предсказал существование в клетках малых молекул, ковалентно связывающихся с помощью особых ферментов с аминокислотами и участвующих в адаптации (приспособлении) аминокислот к генетич. коду, записанному в нуклеотидной форме (так называемой адапторная ги потеза). Такими молекулами оказались тРНК и "рН5-фер-менты", названные позднее аминоацил-тРНК-синтетазами. тРНК открыли в 1957 М. Хоглэнд, М. Стефенсон и П. Замеч-ник (США) и одновременно К. Огата и X. Нохара (Япония).

Впервые нуклеотидную последовательность тРНК установили в 1965 Р. Холли с сотрудниками (США) для дрожжевой тРНКАlа. За последующие 25 лет была расшифрована первичная структура сотен тРНК из различные организмов (бактерии, дрожжи, млекопитающие и др.). В 1974 А. Рич с сотрудниками (США) и А. Клуг с сотрудниками (Великобритания) впервые с помощью рентгеноструктурного анализа установили трехмерную структуру дрожжевой тРНКРhе в кристалле. Позже трехмерные структуры некоторых др. тРНК были расшифрованы в др. лабораториях.

тРНК-первые нуклеиновые кислоты, для которых была установлена сначала первичная, а затем трехмерная структура их молекул, что имело принципиальное значение для развития мол. биологии, химии природные соединений и биоорганическое химии.

Литература: Венкстерн ТРАНСПОРТНЫЕ РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ В., в кн.: Итоги науки и техники, сер. Молекулярная биология, т. 18, М., 1982, с. 49-109; Киселев Л. Л., Фаворова О. О., Лав-рик О. И., Биосинтез белков от аминокислот до аминоацил-тРНК, М., 1984; Спирин А. С., Молекулярная биология. Структура рибосом и биосинтез белка, М., 1986; Transfer RNA: Structure, properties and recognition, eds. P. Schimmel a. o., N.Y., 1979; Transfer RNA: biological aspects, eds. D. Soil a.o., N.Y., 1980; Schulman L., "Progr. Nucl. Acids, Res. and Mol. Biol.", 1991, v. 41, p. 23,


Химическая энциклопедия. Том 4 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
наклейки на мусоровоз
кольцо для сбора конденсата для узла прохода
интерактивная доска для школы
реклама вывеска цена 0,794407515
тур по волге на теплоходе из москвы по золотому кольцу цена 2021

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(28.09.2021)