химический каталог




Тайна золотого медальона

Автор К.Гофман

Атомная физика дает также ответ на вопрос, возможны ли вообще с научной точки зрения те "превращения" других металлов в золото, которые раньше практиковали алхимики. Сегодня мы знаем, что превращение атомов в золото осуществляется только в случае трансмутации соседних элементов - ртути и платины - в устойчивое золото.

Все другие "процессы" получения золота - превращением железа, олова, свинца, даже серебра - заранее обречены на неудачу. Если при таких алхимических манипуляциях действительно "найдено" золото, то оно либо уже было, либо обогащено повторными переплавками. Чаще же всего его ловко примешивали с целью обмана. Нередко использовали и другие трюки для изготовления сплавов и металлических покрытий, поразительно похожих на золото.

Вспомним хотя бы латунь, которая в неокисленном состоянии обладает прекраснейшим золотым блеском. А тот, кто не поверит, что отливающая золотом бронза - сплав меди (29) и олова (50) - не является с точки зрения "ядерной физики" золотом, должен просто сложить заряды ядер отдельных компонентов: 50 + 29 = 79. Такой "расчет" сделал однажды один ученый-юморист. Сейчас в ювелирном промысле часто и вполне законным образом используют сплавы из других металлов, поразительно похожие на золото.

Принц-металл - так именуют латунь золотой окраски. Мангеймским золотом называют сплав меди, цинка и олова. Мозаичное золото, полученное из меди и цинка, имеет оттенок самородного золота. Металл Гамильтона применяют для "золочения" различных предметов. Однако наиболее известен тальми - также сплав меди с цинком, имеющий прекрасную золотую окраску и чрезвычайную стойкость к коррозии.

Существуют, кроме того, минералы и химические соединения, сходные с золотом. Сюда относятся слюда с желтовато-золотым блеском, называемая в народе кошачьим золотом, и пирит (железный колчедан), имеющий металлический латунный блеск. Легендарное золотое сокровище короля Креза, должно быть, большей частью состояло из искрящегося пирита.

Совсем недавно, в 1974 году, канадским химикам удалось получить из ртути кристаллы с золотым блеском. Речь идет о соединении необычайного строения и состава: Hg1,85AsF6, арсенофториде ртути. Не "алхимия" ли это в лучшем, классическом смысле! Могут справедливо возразить, что средневековые алхимики еще ничего не знали об атомной физике. У них не было ни сегодняшнего опыта, ни научно-технических средств. Сторонники алхимии считали, что существовали веские доказательства искусства алхимиков. Откуда же возникло золото, которое изготовлял Луллус по поручению английского короля Эдуарда? Если мы хотим развеять легенду о золоте древних умельцев, необходимо точно ответить на этот и другие вопросы.

Из какого источника черпал золото саксонский курфюрст Август, который занимался алхимией и оставил золотое сокровище в 17 миллионов талеров? Что кроется за тайной золотого медальона, который преподнес алхимик Зейлер императору Леопольду I? Что означает аргентаурум мистера Эмменса? Пришло время ответить на эти вопросы...

В честь победы на море над французами в 1340 году английский король Эдуард III - он царствовал с 1327 по 1377 год - повелел чеканить специальные золотые монеты, так называемые нобли. До 1360 года нобли сохраняли провокационную надпись: "Король Англии и Франции". Монеты эти якобы были изготовлены из золота Раймундуса Луллуса.

Раймундус Луллус родился в 1235 году, умер уже в 1315-м, по другим источникам - не позднее 1333-го. Он служил королю Эдуарду I, который царствовал до 1307 года. Это несомненно. С другой стороны, установлено, что нобли изготовлены из полновесного золота, а не из золота алхимиков. Выходит, что Луллус не мог сделать золото. В то же время исторически достоверно, что король Эдуард III собирал военные контрибуции путем повышения налогов и наложением долговых обязательств. Не стесняясь, он конфисковал золотые предметы из церквей и монастырей, налагал арест даже на символы коронации.

Семнадцать миллионов талеров золотом составило сокровище, которое оставил своим наследникам саксонский курфюрст Август. Он правил с 1553 по 1586 год. Август сам был алхимиком, и к тому же ему служил алхимик Шверцер.

Свое золото Август якобы добыл тайным искусством.

Каково истинное происхождение этого золота? Аптекарь и историк Иоганн Христиан Виглеб тоже задал себе такой вопрос. Точный ответ мы находим в его "Историко-критическом исследовании алхимии или воображаемого искусства изготовления золота", появившемся в 1777 году. Для опровержения легенды о золоте алхимиков Виглеб перерыл исторические источники и обнаружил, что золотому сокровищу саксонского курфюрста есть весьма вероятное объяснение. В XV и XVI веках разработка серебряных руд в саксонских рудоносных горах достигла неожиданного расцвета. Из плодоносных рудников в Шнееберге, Фрайберге и Аннаберге добывали большие количества серебра. Десятая часть - так называемая десятина - должна была принадлежать властителю. Еще такое же количество курфюрст получал с монетного двора за предоставленную привилегию чеканки монет. Исторически доказано, что за 1471 - 1550 годы саксонские курфюрсты присвоили только из шнеебергских серебряных рудников более 4 миллиардов талеров.

В период правления курфюрста Августа серебряное изобилие рудоносных гор не уменьшилось. Поэтому, по мнению Виглеба, "уже не является загадкой, как Август после 33-летнего правления и столь же длительной эксплуатации рудников... смог оставить 17 миллионов талеров... Можно удивляться, что он не оставил больше". Шнеебергский пираргит содержал немалые количества золота, которое тоже извлекали. Шверцер, милостью курфюрста назначенный придворным алхимиком, имел особое пристрастие к этой серебряной руде и "трансмутировал" ее до тех пор, пока в плавильном тигле не начинало сверкать золото.

В 1677 году монах Венцель Зейлер опустил серебряный медальон весом 7 кг примерно на четыре пятых в удивительную жидкость и на глазах придворных императора Леопольда I превратил его в чистое золото. Никто и не думал тогда, что трюк Зейлера будет разгадан только через 250 лет. Конечно, и раньше отбирали пробы по несколько сантиметров с обеих сторон "границы трансмутации" для определения плотности. Эти зарубки можно увидеть и сейчас.

Полученное неопределенное значение 12,6, правда, не совсем соответствовало плотности чистого золота (19,3), а скорее, сплаву серебра с золотом, содержащему 37 % золота. Однако такое предположение еще не давало ключа к тайне медальона.

В последующие годы отбор проб был запрещен, ввиду ценности медальона для истории искусства. Неизвестно было, как разгадать тайну, не отбирая проб для химического анализа. Только в 1931 году два химика из Института микроанализа Венского университета. Штребингер и Райф, смогли нарушить это табу. Они заверили, что используют для каждого анализа не более 10-15 мг.

Ученые отобрали пробы без видимого повреждения медальона и установили состав сплава. Чувствительные методы микроанализа дали поразительный результат: медальон имеет совершенно однородный состав, а именно: 43 % серебра, 48 % золота, 7 % меди и небольшие количества олова, цинка и железа.

Как же удалось Зейлеру придать серебряному сплаву такой оттенок, что все приняли его за чистое золото? Ибо по результатам анализа стало совершенно ясно, что речь здесь идет об окрашивании, а не превращении металла.

Венские химики твердо решили окончательно разгадать тайну средневекового медальона. По их просьбе венский монетный двор изготовил сплав такого же состава. Штребингер и Райф погружали его образцы в самые различные кислоты и растворы солей, пока не открыли вновь рецепт Венцеля Зейлера. Холодная, наполовину разбавленная азотная кислота, которую хорошо умели готовить средневековые алхимики и использовали для разделения золота и серебра, сообщает погруженным в нее серебряным сплавам желаемый золотой блеск! В настоящее время такое травление или "желтое кипячение" относится к самым употребительным рабочим приемам ювелиров. Обработкой различными минеральными кислотами достигается желаемая окраска чистого золота в 24 карата.

Остается еще объяснить случай с американцем Эмменсом. Откуда возникло золото, которое добывал этот современный алхимик якобы из мексиканских серебряных долларов? Имелось серьезное подозрение, что Эмменс был связан с преступной бандой, переплавлявшей похищенные украшения и предметы искусства.

Такая переплавка практиковалась еще испанцами, которые превращали в слитки золото ацтеков, не задумываясь над их художественно-исторической ценностью.

Почему бы и Эмменсу не поступить так же, полагали в Нью-Йорке. "Алхимик", который как ремесленник изготовляет благородный металл,- это ли не самый безопасный способ прикрытия?


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
подача искового заявления о восстановлении на работе после сокращения
ударно-волновая терапия в красноярске адреса цены
микроавтобус 8 мест
самые дорогие гидроскутер в ростове на дону

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(09.12.2016)