химический каталог




Элемент и все же не элемент

Автор К.Гофман

Среди многочисленных открытий Отто Хана особенное значение имел радиоактивный элемент мезоторий. Это был второй после радия радиоактивный элемент, который можно было получать в заметных количествах промышленным путем. В качестве исходного материала использовали импортный монацитовый песок. Мезоторий нашел наиболее широкое применение в медицине - как ценный заменитель все более дорожавшего радия: его излучение, как и излучение радия, могло излечивать злокачественные опухоли.

Долгое время врачи не знали, что собственно представляет собой мезоторий, хотя в его действии они и не сомневались. Поэтому Хан опубликовал подробное сообщение "О свойствах мезотория, получаемого в технике, и его дозировке", из которого все заинтересованные лица с удивлением смогли узнать, что новый препарат, собственно говоря, вовсе не является стопроцентной заменой радия. Первооткрыватель мезотория допускал, что в нем обычно содержится 25 % радия "в качестве примеси". Специалисты были поражены, ибо они ценили Хана как первую величину в радиохимии, и потому не могли поверить, что ему не удалось разделить мезоторий и радий.

Давая объяснения в газете "Хемикер цейтунг" от 3 августа 1911 года, Хан указывал, что получение мезотория в чистом виде нельзя осуществить, потому что радий и мезоторий обладают одинаковыми химическими свойствами, однако весьма заметно отличаются своими радиоактивными константами. Поэтому пришлось принять, что они - разные элементы. Однако по химическим свойствам они абсолютно сходны, как если бы являлись одним и тем же элементом. Как объяснить такой факт? Даже после появления теории радиоактивного распада явление радиоактивности оставалось для многих ученых непонятным, необъяснимым, просто сверхъестественным. Когда Отто Хан в 1907 году на защите своей диссертации говорил о том, что можно обнаружить 10[-10] радиоактивного вещества на основе его излучения, ему не поверил даже всеми уважаемый Эмиль Фишер - первый нобелевский лауреат среди немецких химиков.

Фишер высказал мнение, что, по его убеждению, нет более чувствительного прибора обнаружения, чем.... его собственный нос, который смог бы уловить некоторые вещества в еще меньших количествах. Конечно, не стоило особенно обижаться на критику Эмиля Фишера, ибо обычно он поддерживал и выдвигал работы Хана в Берлинском университете С другой стороны, Хан чувствовал порой, что многие сомневаются в перспективности радиоактивных исследований, даже пытаются их дискредитировать.

Остановимся несколько подробнее на особенно характерном случае, поскольку он весьма наглядно показывает, перед какой дилеммой стояли в то время многие ученые. Мы располагаем дословным описанием этого события - протоколами доклада и дискуссии, происходившего на заседании немецкого Бунзеновского общества по прикладной и физической химии в мае 1907 года в Гамбурге Председательствовал известный физико-химик, профессор Вальтер Нернст. Тема: "Радиоактивность и гипотеза распада атома".

Отто Хан сделал вводный доклад о теории радиоактивного распада и привел примеры последних данных по применению его в науке. Его коллега, венский радиохимик Лерх, дал слушателям иллюстрацию чувствительности радиоактивного излучения: "Количество радиоактивного элемента радия, необходимое для разрядки электроскопа за 1 с, оказывается, составляет 10[-10] г... Если же разделить 1 мг радия на всех живущих в мире людей - около двух миллиардов - то количества вещества, полученного каждым, хватило бы для опадания листочков пяти электроскопов за 1 с".

Это явно произвело впечатление на присутствовавших. Однако тут профессор неорганической химии Тамман, всемирно известный ученый, задал провокационный вопрос: "Меня поразило, что сегодня несколько раз говорилось о том, что эманация относится к благородным газам. Я не могу полностью к этому присоединиться, ибо для всех известных благородных газов до сих пор не было доказано, что они способны как-либо распадаться и могли бы считаться соединениями, а не элементами. Возникает вопрос: являются ли радиоактивные элементы вообще элементами, господа? Судя по тому, что мы знаем, радию нет места в периодической системе...".

Послышались возмущенные возгласы, однако можно было услышать и одобрение, порой легкий смех.

В качестве председательствующего Нернст наконец установил порядок и попытался уладить спор соломоновым решением: "Вся суть в определении. Можно дать такое определение: элемент, остающийся постоянным по своей массе, является элементом, а элемент претерпевающий радиоактивное превращение, не является элементом". Сегодня мы знаем, что такое обоснование неверно.

Ученые, присутствовавшие на Бунзеновском чтении, тоже не слишком спешили согласиться с мнением Нернста.

Вновь взял слово Отто Хан: "Я хотел бы сначала ответить на вопрос о природе радиоактивной эманации. Вообще благородными газами называются такие газы, которые пока не удавалось ввести в реакцию даже с самыми энергичными реагентами. Эманацию радия пропускали над раскаленным магнием, над раскаленной медью, через самые различные реагенты, которые со всеми другими газами, кроме благородных, всегда приводили к образованию соединений.

Эманация радия после пропускания через все системы была найдена неизмененной...".

Тамман прервал оратора: "Я все же не отнес бы их к числу благородных газов, ибо благородные газы не претерпевают реакции радиоактивного распада".

"... Вопрос в различии между радиоактивными эманациями и благородными газами,- невозмутимо продолжал д-р Хан,- возникает и отпадает со вторым вопросом профессора Таммана - является ли радий элементом?.. Радий до сих пор считался элементом и считается таковым большинством исследователей, хотя он испускает лучи. Различия между ним и другими элементами только в степени устойчивости. Уран всегда рассматривался как элемент, а он тоже радиоактивен. Есть элементы, которые распадаются за три секунды, а есть такие, которые распадаются за тысячи миллионов лет, как торий и уран".

Во время дискуссии профессор Браунер из Праги предложил свою теорию: "Я представляю себе вопрос таким образом: если могут быть уже мертвые, вымершие элементы, которые более не существуют... почему не может быть короткоживущих элементов, которые когда-то существовали или хотя бы существуют и теперь, но в столь малых количествах, что еще не обнаружены их следы?" На это Нернст немного насмешливо заметил: "Малоутешительной гипотезе коллеги Браунера о том, что существуют уже вымершие элементы, можно противопоставить более жизнерадостную: отдельные элементы еще не народились". Хотя это и была шутка, в словах Нернста заключалось зернышко будущей истины.

В оживленной дискуссии на заседании Бунзеновского общества речь зашла об истинно научной проблеме. Обычно открытие новых элементов вызывало воодушевление. Однако обнаружение столь большого числа радиоактивных элементов привело в конце концов к беспомощности и путанице. Причина состояла в том, что радиоактивные элементы уже нельзя было разместить в периодической системе. Оставались еще пустые клетки, но для радиоактивных элементов места больше не было. Их было слишком много. Уже было обнаружено 25 элементов и лишь первые из них - уран, радий, полоний, торий, актиний - нашли свои законные места.

"Меня очень беспокоит вопрос, что же теперь делать со всеми этими радиоактивными элементами в периодической системе..."- высказался профессор Браунер. С ним должны были согласиться все собравшиеся ученые.

Что же, гениально задуманная и многократно подтвержденная периодическая система элементов утратила свою справедливость для радиоактивных элементов? Уж не назревал ли "кризис в химии"? Либо эти новые радиоактивные вещества все же не были элементами? В элементарном характере радиоактивных веществ мало кто сомневался, хотя их превращения и были вначале непонятными.

Беспокоило то, что их не удавалось разместить в периодической системе.

Большинство открытых радиоактивных элементов распадались очень быстро и всегда образовывались в неизмеримо малых количествах, поэтому нельзя было и думать об определении их атомной массы, этой основы классификации. Несколько лет спустя положение стало еще более безысходным. Сотрудница Хана, физик Лиза Мейтнер, сообщила в сентябре 1909 года на заседании в Зальцбурге о новых продуктах дальнейшего распада. Дебаты грозили стать очень горячими, подобно тем, которые разразились на заседании Бунзеновского общества за два года до этого. Учитывая солидное число полученных радиоактивных элементов, известный физик Генрих Рубенс высказал сомнение: "Очень приятно и радостно, конечно, что семья радия вновь возросла. Однако со временем это становится немного тревожным и спрашиваешь себя, будет ли это размножение продолжаться?.." Внести ясность смог бы только новый теоретический фундамент. Разрешить вопрос удалось лишь в 1913 году Фредерику Содди теорией изотопии элементов.

Согласно ей, один и тот же элемент может состоять из нескольких разновидностей атомов, а именно изотопов, которые имеют различные атомные массы (массовые числа). Некоторые элементы являются чистыми, то есть состоят только из одного рода атомов с твердо определенной атомной массой. Смешанные элементы, напротив, имеют несколько различных по массе изотопов. Изотопы одного и того же элемента химически неразличимы друг от друга, следовательно, их нельзя разделить химическим путем. Однако у них есть вполне определенные физические различия, которые для радиоактивных элементов проявляются в типе распада и в характерном периоде полураспада. Конечно, теперь уже недостаточно было определения атомной массы, чтобы найти место для элемента в периодической системе. Только с введением для каждого элемента еще одной величины - порядкового номера, позднее названного зарядом ядра, наступил, действительно, "порядок". Водород получил порядковый номер 1, уран как последний элемент - порядковый номер 92, в соответствии с числом электронов в их атоме. Однако оставалось не ясным, почему изотопы одного и того же элемента могут иметь различные массовые числа. Этот вопрос был разъяснен только 20 лет спустя.

Новая теория, которая вскоре была экспериментально подтверждена и дополнена, сразу разрешила имевшиеся проблемы: все открытые в последнее время радиоактивные элементы оказывались разновидностями уже известных элементов. Лишь совсем немногие являлись действительно новыми химическими элементами и, следовательно, могли претендовать на свое место в периодической системе. Радиоактивные эманации были не чем иным, как изотопами благородного газа радона. Радиоторий Хана является изотопом тория с массовым числом 218; открытый им же мезоторий - изотопом радия с массовым числом 228. Следовательно, и радиоторий и мезоторий не представляют собой новых элементов в первоначальном смысле этого слова; это заблуждение простительно, если вспомнить, что теория атома в то время была еще весьма несовершенной.

Было также найдено объяснение неудачам, постигшим попытки разделения радия и мезотория. Этот процесс был попросту обречен на провал, ибо речь шла практически об одном и том же химическом элементе.

Долгожданная победа

XX век начался барабанным боем, который в 1903 году возвестил о возможности превращения радия в гелий. Однако, если быть исторически точным, то была не первая трансмутация, проведенная в XX столетии. За три года до этого, в марте 1900 года, когда еще почти ничего не было известно о радиоактивных превращениях, химик Фиттика из Марбурга поразил своих коллег удивительной статьей. В ней он с полной серьезностью утверждал, что ему удалось на опыте превратить фосфор в мышьяк. Отсюда Фиттика сделал вывод, что мышьяк вовсе не элемент, то есть его не следует помещать в периодическую систему. Мышьяк на самом деле является соединением фосфора, азота и кислорода: As= (PN2O)2O3.

"Такое утверждение просто непостижимо,- возмущался Клеменс Винклер, который своей оценкой уничтожил "открытие" Фиттики. - Уже по меньшей мере тысячу лет получают мышьяк в технике и в больших масштабах переводят его из одного соединения в другое; до сих пор не было никаких сомнений в его элементарной природе. Несомненно, мышьяк действительно является элементом в современном смысле этого слова... Утверждение Фиттики основывается на колоссальной ошибке, и я весьма сожалею, что эту ошибку приходится обсуждать открыто".

А ведь этот Фиттика был не дилетантом, а профессором химии в Марбургском университете. Отто Хан во время своей учебы в 1897/98 годах "имел удовольствие" слушать лекции Фиттики по истории химии. Об этом он оставил нам исчерпывающие сведения, которые как-то характеризуют этого странного ученого. В своих воспоминаниях Хан писал, что Фиттика в лекциях ограничивался оглашением старых алхимических текстов. Очевидно, Фиттика сам не мог избежать влияния этих трактатов. Во всяком случае последние его работы в Марбурге, по словам Хана, касались только собственных опытов по превращению элементов, которые он проделывал в сумеречном состоянии, следовавшем за его эпилептическими припадками.

Винклер прочел первую работу марбургского профессора алхимии и подверг ее уничтожающей критике. Он указал на элементарные огрехи Фиттики: конечно, господин профессор Фиттика совсем не учел, что продажный фосфор содержит мышьяк... И тут гнев известного химика излился на ренегата. Словно Зевс с Олимпа, метал он громы и молнии на неверного подданного: "Создается впечатление,- возмущался Винклер,- что в неорганической химии теперь появилась опасная склонность ударяться в спекуляции. Немалой причиной является то, что искусство анализа приходит, к сожалению, в упадок. Я подчеркиваю - "искусство", ибо между анализами может существовать различие, как между работой скульптора и каменотеса".

Однако ославленный химик не сразу признал себя побежденным. В "Хемикер цейтунг" выпусков 1900 и 1901 годов, которая одна лишь публиковала работы Фиттики, к тому же на видном месте, можно найти несколько сообщений, примечаний, уточнений, принадлежащих его перу. "Да, я действительно позволил себе выполнять алхимические опыты в Институте химии Марбургского университета,- пытался оправдаться профессор Фиттика.- По существу, мы сегодня еще алхимики, конечно, не в смысле искусства изготовления золота, а потому, что признаем возможность превращения металлов".

Далее Фиттика сообщал о новых удачных опытах по трансмутации, на манер древних алхимиков: о превращении элемента фосфора в сурьму, а также бора - в кремний. Однако после этого он обиженно отошел от дел, ибо нападки на его персону участились и он вызывал лишь насмешки своих коллег. Даже ссылки на его 28-летний стаж химика уже не могли помочь Фиттике. Его последнее выступление, которое опубликовала "Хемикер цейтунг" в ноябре 1901 года, звучало как заклятие: Фиттика обещал вскоре доказать, что большинство сегодняшних элементов не заслуживают вовсе этого названия! И если не он сам, то другие покажут это.

Однако вернемся к точной науке. Вернемся к Вильяму Рамзаю, который совместно с Содди действительно впервые указал на превращение элементов.

Когда в 1906 году Вильгельм Оствальд посетил англичанина в его лондонской частной лаборатории на Риджент-стрит, Рамзай тотчас же познакомил гостя с результатами своих новых опытов. Оствальд, который приобрел прочную славу как один из основоположников современной физической химии, слушал сообщение Рамзая с возрастающим удивлением. Вещи, излагаемые английским ученым "способны были поднять волосы дыбом у всякого правоверного химика", - так комментировал Оствальд новейшее открытие своего коллеги в "Хемикер цейтунг" от 24 июля 1907 года в статье под заголовком "Трансмутация элементов".

Рамзай тщательно берег несколько белых кристалликов на часовом стекле.

Если несколько крупинок этого вещества он помещал в пламя, то спектроскоп обнаруживал характерную красную линию элемента лития. Ну что же, ничего особенного, - подумал Оствальд. Однако эту соль лития Рамзай получил действием эманации радия на раствор соли меди. Как ни поразительно это было, видимо, эманация, как своего рода философский камень, превратила медь в литий. В этом не было сомнения, ибо Рамзай был убежден, что принял все возможные меры предосторожности, чтобы избежать привнесения лития извне.

Через год, в июле 1907 года, после многих дальнейших опытов Рамзай опубликовал это открытие в английском журнале "Нейчур". Немецкий перевод дал журнал "Цейтшрифт фюр ангевандте хеми" 2 августа 1907 года под броским заголовком "Эманация радия. Превращение элементов". Научный мир был ошеломлен, ибо все знали, с какой скрупулезной точностью работает Рамзай. До сих пор его искусство экспериментатора вызывало к нему величайшее уважение.

Что же, неужели действительно появился еще один пример превращения элементов с помощью радиоактивных веществ? Конечно, было достаточно критических высказываний, выражавших сомнение.

В июле 1908 года мадам Кюри и ее сотрудница Гледич разгадали эту загадку: при воспроизведении опыта Рамзая можно было обнаружить литий, но лишь тогда, когда использовались приборы из обычного лабораторного стекла. В случае платинового оборудования проба на литий оказывалась отрицательной.

Следы лития из стекла обманули даже опытного практика, Рамзая, так что ему почудилась трансмутация меди в литий.

Что поделать! Рамзай согласился, что превращение в элемент литий не подтвердилось. Однако в остальном он остался верен своему воззрению: в настоящее время принципиально осуществима трансмутация элементов.

Возможность для такого превращения он видел в огромной энергии, заключенной в радиоактивном веществе. Если это подтвердится, писал Вильям Рамзай в своих "Опытах" вышедших в свет в 1908 году, то трансмутация элементов уже не покажется бессмысленной мечтой. Тогда окажется, что открыт философский камень; вполне вероятно, что осуществится и другая мечта средневековых философов, а именно: будет получен эликсир жизни, Высказывания такого рода не всегда вызывали сочувствие у собратьев по науке. Рамзая, как, впрочем, и Крукса, упрекали в том, что он хочет придать химии "средневековые черты".

Это направление непременно должно было привести к кризису в химии.

Не поддаваясь таким высказываниям, сэр Вильям Рамзай разрабатывал дальше свою теорию. На общем заседании химического общества в Лондоне, 25 марта 1909 года, в докладе "Элементы и электроны" он объявил, что, с его точки зрения, все элементы отличаются только различным числом электронов и потому могут превращаться друг в друга. Нужно только либо отщепить, либо присоединить электроны.

Рамзай признался, что до последнего времени считал это воззрение утопией, ибо не знал, как его осуществить на практике. Теперь таким средством мы располагаем; по его мнению, это - радиоактивное излучение, что подтверждается превращением радия в гелий. Рамзай доложил слушателям о своих самых последних экспериментах: попытке перевести серебро в другой элемент с помощью радиоактивного излучения. К сожалению, результат пока что был отрицательным. Рамзай умолчал о том, какой именно элемент он надеялся получить из серебра. Однако многим было ясно, что это могло быть лишь золото! Было ли это желанной "реабилитацией" классической алхимии? Такой поворот был неожиданным - ведь алхимия, казалось, давно была выброшена на свалку истории. Ее последние приверженцы, махнув рукой, сознавались, что тайна получения философского камня безвозвратно ушла из этого мира вместе с последним умельцем. А то, что было написано в старых алхимических рукописях, как известно, мало чего стоило.

И вот теперь наступила великая победа. Радиоактивность привела к возрождению алхимии - так, по крайней мере, считали ее приверженцы.

Высокочтимые ученые должны были признать, что химические элементы можно на практике превратить друг в друга.

Публикация Рамзая о "трансмутации" меди в литий вначале тоже послужила для современных алхимиков "доказательством" того, что обычные металлы ведут себя так же, как радиоактивные элементы. А уж к твердо установленному факту превращения радиоактивных элементов ничего не добавишь: образуется же радий из урана, который сам, проходя через ряд превращений, становится свинцом.

Это ли не долгожданное подтверждение алхимического учения? Истолкование радиоактивного превращения элементов было для поруганной алхимии вопросом чести. Принципиально было безразлично, превращается ли уран в радий, медь в литий или ртуть в золото. Старые и новые алхимики победно заявляли: ведь достаточно было нескольких миллиграммов радия, чтобы разрушить ту искусно созданную стену предрассудков, которая была воздвигнута против святого учения о превращении элементов.

"Забавно наблюдать, как в газетах и иллюстрированных еженедельниках в рубрике "Наука и техника" весьма осторожно подготавливают непосвященную публику к назревающему повороту",- эти слова появились в 1908 году в статье одного из энтузиастов под вызывающим заголовком "Триумф алхимии.

(Трансмутация металлов)". Приверженцы алхимии аргументировали в споре по-своему. Каждому, мол, известно, что наука развивается бурно.

Следовательно, овладение произвольным превращением элементов является лишь вопросом времени, и тогда мы узнаем, как искусственно получить золото в любых количествах. Предсказание Гиртаннера было-де справедливым, однако оно относится к XX столетию, а не к XIX. А что такое сто лет по сравнению с почти трехтысячелетней историей алхимии?


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
стоимость жб перемычки
Ручка раздельная BRISTOL SQ006-21SN CP-3 матовыи? никель хром
ячейки для хранения мобильных телефонов
набор для бадминтона head nano ti elite 4*bm set with full cover

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(24.06.2017)