химический каталог




СПЕКТРОФОТОМЕТРИЯ

Автор Химическая энциклопедия г.р. Н.С.Зефиров

СПЕКТРОФОТОМЕТРИЯ, метод исследования и анализа веществ, основанный на измерении спектров поглощения в оптический области электромагн. излучения. Иногда под СПЕКТРОФОТОМЕТРИЯ понимают раздел физики, объединяющий спектроскопию (как науку о спектрах электромагн. излучения), фотометрию и спектрометрию [как теорию и практику измерения соответственно интенсивности и длины волны (или частоты) электромагн. излучения]; на практике СПЕКТРОФОТОМЕТРИЯ часто отождествляют с оптический спектроскопией. По типам изучаемых систем СПЕКТРОФОТОМЕТРИЯ обычно делят на молекулярную и атомную. Различают СПЕКТРОФОТОМЕТРИЯ в ИК, видимой и УФ областях спектра (см. Инфракрасная спектроскопия, Ультрафиолетовая спектроскопия).

Применение СПЕКТРОФОТОМЕТРИЯ в УФ и видимой областях спектра основано на поглощении электромагн. излучения соединениями, содержащими хромофорные (например, С = С, С=С, С=О) и ауксохромные (ОСН3, ОН, NH2 и др.) группы (см. Цветность органических соединений}. Поглощение излучения в этих областях связано с возбуждением электронов s-, p-и n-орбиталей основные состояния и переходами молекул в возбужденные состояния: s : s*, n : s*, p : p* и n : p* (переходы перечислены в порядке уменьшения энергии, необходимой для их осуществления; см. также Молекулярные спектры). Переходы s : s* находятся в далекой УФ области, например у парафинов при ~ 120 нм. Переходы n : s* наблюдаются в УФ области; например, органическое соединение, содержащие n-электроны, локализованные на орбиталях атомов О, N, Hal, S, имеют Полосы поглощения при длине волны около 200 нм. Линии, соответствующие переходам p : p*, например, в спектрах гетероциклический соединений проявляются в области около 250-300 нм и имеют большую интенсивность. Полосы поглощения, соответствующие переходам n : p*, находятся в ближней УФ и видимой областях спектра; они характерны для соединение, в молекулах которых имеются такие хромофорные группы, как С = О, C = S, N = N. Так, насыщ. альдегиды и кетоны имеют максимумы поглощения при длине волны около 285 нм. Переходы типа n : p* часто оказываются запрещенными, и соответствующие полосы поглощения обладают очень малой интенсивностью.

Переходы типа p : p* могут сопровождаться переходом электрона с орбитали, локализованной главным образом на одной группе (например, С=С), на орбиталь, локализованную на др. группе (например, С=О). Такие переходы сопровождаются переносом электрона с одного атома на другой и соответствующие спектры называют спектрами с переносом заряда. Последние характерны для различные комплексов (например, арома-тич. соединений с галогенами), интенсивно поглощающих в видимой и УФ областях.

Для ионов переходных металлов и их комплексных соединений характерны переходы с участием d-электронов, а для РЗЭ и актиноидов-переходы с участием f-электронов. Соответствующие соединение в растворе бывают интенсивно окрашенными, причем окраска (спектр поглощения) зависит от степени окисления катиона и устойчивости комплексного соединения. Поэтому СПЕКТРОФОТОМЕТРИЯ широко используют при исследовании и анализе комплексных соединений металлов.

Изолированные, не взаимодействующие между собой хромофоры в молекуле поглощают независимо. В случае к.-л. взаимодействие между ними аддитивность спектров нарушается. По отклонениям от аддитивности можно судить о характере и величине взаимодействия. Поскольку положение полос в спектре определяется как разность энергий основного и возбужденного состояний молекул, можно определять структуру энергетич. уровней молекул или по известной схеме энергетич. уровней определять положение полос поглощения. Любому электронному состоянию молекул соответствует набор различные колебательное уровней энергии. Колебат. структура полосы, соответствующей переходу между электронными уровнями, может отчетливо проявляться не только в спектрах газов, но и в спектрах некоторых растворов, что дает возможность получать дополнительной информацию о взаимодействие молекул. Спектрофотометрич. исследование спектров молекул в видимой и УФ областях позволяет установить вид электронных переходов и структуру молекул. При этом часто исследуют влияние различные типов замещения в молекулах, изменения растворителей, температуры и др. физических-химический факторов.

В ИК области проявляются переходы между колебательное и вращательное уровнями (см. Колебательные спектры, Вращательные спектры). Среди частот колебаний молекул выделяют так называемой характеристические, которые практически постоянны по величине и всегда проявляются в спектрах химический соединение, содержащих определенные функциональных группы (вследствие чего эти частоты иногда называют групповыми; см. табл. на форзаце 2-го тома). Теория колебаний сложных молекул позволяет расчетным путем предсказать колебательное спектр соединений, т. е. определить частоты и интенсивности полос поглощения.

Колебат. спектры молекул чувствительны не только к изменению состава и структуры (т.е. симметрии) молекул, но и к изменению различные физических и химический факторов, например изменению агрегатного состояния вещества, температуры, природы растворителя, концентрации исследуемого вещества в растворе, различные взаимодействие между молекулами вещества (ассоциация, полимеризация, образование водородной связи, комплексных соединений, адсорбция и т. п.). Поэтому ИК спектры широко используют для исследования, качеств. и количественное анализа разнообразных веществ.

В ближней ИК области (10000-4000 см-1, или 1-2,5 мкм), где расположены обертоны и составные частоты основные колебаний молекул, полосы поглощения имеют интенсивность в 102-103 раз меньше, чем в средней ИК области (4000-200 см-1). Это упрощает подготовку образцов, так как толщина поглощающего слоя может быть достаточно большой (до несколько мм и более). Эксперим. техника для работы в этой области относительно проста. Однако чувствительность и селективность определения отдельных соединений невелики. Тем не менее высокое отношение сигнал:шум (до 105) создает хорошие условия для количественное анализа при содержании определяемого соединения около 1% и выше. Подобные анализы выполняются за 1 мин. В дальней ИК области (200-5 см-1) могут наблюдаться чисто вращат переходы.

Интенсивность полосы поглощения молекулы определяется вероятностью соответствующего электронного (или колебательного) перехода. Для характеристики интенсивности полосы служит молярный коэффициент поглощения e (см. Абсорбционная спектроскопия), определяемый, согласно закону Бугера-Ламберта-Бера, как e = A/Cl, где А = = — lgT= — lg(I/I0), T-пропускание, I0 и I-интенсивности соответственно падающего и прошедшего через вещество излучения, С-молярная концентрация вещества, поглощающего излучение, l-толщина поглощающего слоя (кюветы), в см. Обычно e<105, в ИК области e<2•103 (л/моль•см). Закон Бугера-Ламберта-Бера лежит в основе количественное анализа по спектрам поглощения.

Для измерения спектров используют спектральные приборы-спектрофотометры, основные части которого: источник излучения, диспергирующий элемент, кювета с исследуемым веществом, регистрирующее устройство. В качестве источников излучения применяют дейтериевую (или водородную) лампу (в УФ области) и вольфрамовую лампу накаливания или галогенную лампу (в видимой и ближней ИК областях). Приемниками излучения служат фотоэлектронные умножители (ФЭУ) и фотоэлементы (фоторезисторы на основе PbS). Диспергирующими элементами прибора являются призмен-ный монохроматор или монохроматор с дифракц. решетками. Спектр получают в графич. форме, а в приборах со встроенной мини-ЭВМ-в графической и цифровой формах. Графически спектр регистрируют в координатах: длина волны (нм) и(или) волновое число (см-1)-пропускание (%) и(или) оптический плотность. Осн. характеристики спектрофотометров: точность определения длины волны излучения и величины пропускания, разрешающая способность и светосила, время сканирования спектра. Мини-ЭВМ (или микропроцессоры) осуществляют автоматизир. управление прибором и различные мат. обработку получаемых эксперим. данных: статистич. обработку результатов измерений, логарифмирование величины пропускания, многократное дифференцирование спектра, интегрирование спектра по различные программам, разделение перекрывающихся полос, расчет концентраций отдельных компонентов и т. п. Спектрофотометры обычно снабжаются набором приставок для получения спектров отражения, работы с образцами при низких и высоких температурах, для измерения характеристик источников и приемников излучения и т.п.

Для исследования спектров в ИК области используют обычно спектрофотометры, работающие в интервале от 1,0 до 50 мкм (от 10000 до 200 см-1). Осн. источниками излучения в них являются стержень из кароида кремния (глобар), штифт из смеси оксидов циркония, тория и иттрия (штифт Нернста) и спираль из нихрома. Приемниками излучения служат термопары (термоэлементы), болометры, различные модели оптико-акустич. приборов и пироэлектрич. детекторы, например на основе дейтерированного триглицинсульфата (ТГС). В спектрофотометрах, сконструированных по "клас-сич." схеме, в качестве диспергирующих элементов применяют призменный монохроматор или монохроматор с дифракц. решетками. С кон. 60-х гг. 20 в. выпускаются ИК фурье-спектрофотометры (см. Фурье-спектроскопия), которые обладают уникальными характеристиками: разрешающая способность-до 0,001 см-1, точность определения волнового числа v-до 10-4 см-1 (относит. точность bDv/v ! ! 10 -8), время сканирования спектра может достигать 1 с, отношение сигнал:шум превышает 105. Эти приборы позволяют изучать образцы массой менее 1 нг. К ним также имеются различные приставки для получения спектров отражения, исследования газов при малых или высоких давлениях, разных температурах и т. п. Встроенная в прибор мини-ЭВМ управ ляет прибором, выполняет фурье-преобразования, осуществляет накопление спектров, проводит различные обработку получаемой информации.

ИК фурье-спектрофотометры могут содержать программы по автоматич. идентификации образца неизвестного состава и определению содержания примесей, например в полупроводниковых материалах.

СПЕКТРОФОТОМЕТРИЯ широко применяют для исследования органическое и неорганическое веществ, для качеств. и количественное анализа различных объектов (в частности, природных), для контроля технол. процессов. Так, разработаны спектрофотометрич. методы определения в растворах Сu и Rb (пределы обнаружения 3•10-6% по массе), Со (2,5 • 10 -5 % по массе), Hf и Zr (0,5 мкг/мл); V (0,2 мкг/мл), гликозидов (0,05 мкг), белков (0,2 мкг/мл), тимола (1-2 мкг/мл); в атмосфере можно определить СО, оксиды азота, этилен, О3, NH3, CH4 с пределами обнаружения ~ 10-7% по массе.

Литература: Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962; Дайер Д. Р., Приложения абсорбционной спектроскопии органических соединений, пер. с англ., М., 1970; Приборы и методы анализа в ближней инфракрасной области, М., 1977; Смит А., Прикладная ИК-спектроскопия, пер. с англ., М., 1982; Современная колебательная спектроскопия неорганических соединений, Новосиб., 1990; Накамото К., ИК спектры и спектры КР неорганических и координационных соединений, пер. с англ., М., 1991. Э. Г. Тетерин.

Химическая энциклопедия. Том 4 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
забор из штакетника металлического акция
Всегда выгодно в KNSneva.ru - Samsung SL-M4020ND - специальные условия для корпоративных клиентов в Санкт-Петербурге!
Венчики KitchenAid купить
спектакль дуэнья вологда 26 января

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(04.12.2016)