химический каталог




СЕРНАЯ КИСЛОТА

Автор Химическая энциклопедия г.р. Н.С.Зефиров

СЕРНАЯ КИСЛОТА H2SO4, молекулярная масса 98,082; бесцв. маслянистая жидкость без запаха. Очень сильная двухосновная кислота, при 18°С pKa1 - 2,8, K21,2•10-2, pKa2l,92; длины связей в молекуле S=O 0,143 нм, S—ОН 0,154 нм, угол HOSOH 104°, OSO 119°; кипит с различные, образуя азеотропную смесь (98,3% H2SO4 и 1,7% Н2О с температура кипения 338,8 °С; см. также табл. 1). СЕРНАЯ КИСЛОТА к., отвечающая 100%-ному содержанию H2SO4, имеет состав (%): H2SO4 99,5, 0,18, 0,14, Н3О+ 0,09, H2S2O7 0,04, HS2O7 0,05. Смешивается с водой и SO3 во всех соотношениях. В водных растворах СЕРНАЯ КИСЛОТА к. практически полностью диссоциирует на Н+, и . Образует гидраты H2SO4•nH2O, где n = 1, 2, 3, 4 и 6,5.

Растворы SO3 в СЕРНАЯ КИСЛОТА к. называют олеумом, они образуют два соединение H2SO4•SO3 и H2SO4•2SO3. Олеум содержит также пи-росерную кислоту, получающуюся по реакции: Н2SO4 + + SO3:H2S2O7.

Температура кипения водных растворов СЕРНАЯ КИСЛОТА к. повышается с ростом ее концентрации и достигает максимума при содержании 98,3% H2SO4 (табл. 2). Температура кипения олеума с увеличением содержания SO3 понижается. При увеличении концентрации водных растворов СЕРНАЯ КИСЛОТА к. общее давление пара над растворами понижается и при содержании 98,3% H2SO4 достигает минимума. С увеличением концентрации SO3 в олеуме общее давление пара над ним повышается. Давление пара над водными растворами СЕРНАЯ КИСЛОТА к. и олеума можно вычислить по уравению: lgp(Пa) = А — В/Т+ 2,126, величины коэффициент А и В зависят от концентрации СЕРНАЯ КИСЛОТА к. Пар над водными растворами СЕРНАЯ КИСЛОТА к. состоит из смеси паров воды, Н2SO4 и SO3, при этом состав пара отличается от состава жидкости при всех концентрациях СЕРНАЯ КИСЛОТА к., кроме соответствующей азеотропной смеси.

С повышением температуры усиливается диссоциация H2SO4 H2О + SO3 — Q, уравение температурной зависимости константы равновесия lnКp = 14,74965 - 6,71464ln(298/T) - 8, 10161•104T2-9643,04/T-9,4577•10-3Т+2,19062 x 10-6T2. При нормальном давлении степень диссоциации: 10-5 (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К). Плотность 100%-ной СЕРНАЯ КИСЛОТА к. можно определить по уравению: d= 1,8517 — — 1,1 • 10-3 t + 2•10-6t2 г/см3. С повышением концентрации растворов СЕРНАЯ КИСЛОТА к. их теплоемкость уменьшается и достигает минимума для 100%-ной СЕРНАЯ КИСЛОТА к., теплоемкость олеума с повышением содержания SO3 увеличивается.

При повышении концентрации и понижении температуры теплопроводность l уменьшается: l = 0,518 + 0,0016t - (0,25 + + t/1293)•С/100, где С-концентрация СЕРНАЯ КИСЛОТА к., в %. Макс. вязкость имеет олеум H2SO4•SO3, с повышением температуры h снижается. Электрич. сопротивление СЕРНАЯ КИСЛОТА к. минимально при концентрации 30 и 92% H2SO4 и максимально при концентрации 84 и 99,8% H2SO4. Для олеума миним. r при концентрации 10% SO3. С повышением температуры r СЕРНАЯ КИСЛОТА к. увеличивается. Диэлектрич. проницаемость 100%-ной СЕРНАЯ КИСЛОТА к. 101 (298,15 К), 122 (281,15 К); криоскопич. постоянная 6,12, эбулиоскопич. постоянная 5,33; коэффициент диффузии пара СЕРНАЯ КИСЛОТА к. в воздухе изменяется с изменением температуры; D = 1,67• 10-5 T3/2 см2/с.

СЕРНАЯ КИСЛОТА к.-довольно сильный окислитель, особенно при нагревании; окисляет HI и частично НВг до свободный галогенов, углерод-до СО2, S-до SO2, окисляет многие металлы (Си, Hg и др.). При этом СЕРНАЯ КИСЛОТА к. восстанавливается до SO2, а наиболее сильными восстановителями-до S и H2S. Конц. H2SO4 частично восстанавливается Н2, из-за чего не может применяться для его сушки. Разб. H2SO4 взаимодействие со всеми металлами, находящимися в электрохимический ряду напряжений левее водорода, с выделением Н2. Окислит. свойства для разбавленый H2SO4 нехарактерны. СЕРНАЯ КИСЛОТА к. дает два ряда солей: средние-сульфаты и кислые-гидросульфаты (см. Сульфаты неорганические), а также эфиры (см. Сульфаты органические). Известны пероксомоносерная (кислота Каро) H2SO5 и пероксоди-серная H2S2O8 кислоты (см. Сера).

Получение. Сырьем для получения СЕРНАЯ КИСЛОТА к. служат: S, сульфи-ды металлов, H2S, отходящие газы теплоэлектростанций, сульфаты Fe, Ca и др. Осн. стадии получения СЕРНАЯ КИСЛОТА к.: 1) обжиг сырья с получением SO2; 2) окисление SO2 до SO3 (конверсия); 3) абсорбция SO3. В промышленности применяют два метода получения СЕРНАЯ КИСЛОТАк., отличающихся способом окисления SO2,-контактный с использованием твердых катализаторов (контактов) и нитрозный-с оксидами азота. Для получения СЕРНАЯ КИСЛОТА к. контактным способом на современной заводах применяют ванадиевые катализаторы, вытеснившие Pt и оксиды Fe. Чистый V2O5 обладает слабой каталитических активностью, резко возрастающей в присутствии солей щелочных металлов, причем наиболее влияние оказывают соли К. Промотирующая роль щелочных металлов обусловлена образованием низкоплавких пиросульфованадатов (3К2S2О7 • V2О5, 2К2S2O7 • V2O5 и K2S2O7•V2O5, разлагающихся соответственно при 315-330, 365-380 и 400-405 °С). Активный компонент в условиях катализа находится в расплавленном состоянии.

Схему окисления SO2 в SO3 можно представить следующей образом:

На первой стадии достигается равновесие, вторая стадия медленная и определяет скорость процесса.

Произ-во СЕРНАЯ КИСЛОТА к. из серы по методу двойного контактирования и двойной абсорбции (рис. 1) состоит из следующей стадий. Воздух после очистки от пыли подается газодувкой в сушильную башню, где он осушается 93-98%-ной СЕРНАЯ КИСЛОТА к. до содержания влаги 0,01% по объему. Осушенный воздух поступает в серную печь после предварит. подогрева в одном из теплообменников контактного узла. В печи сжигается сера, подаваемая форсунками: S + О2 : SO2 + + 297,028 кДж. Газ, содержащий 10-14% по объему SO2, охлаждается в котле и после разбавления воздухом до содержания SO2 9-10% по объему при 420 °С поступает в контактный аппарат на первую стадию конверсии, которая протекает на трех слоях катализатора (SO2 + V2O2 : : SO3 + 96,296 кДж), после чего газ охлаждается в теплообменниках. Затем газ, содержащий 8,5-9,5% SO3, при 200 °С поступает на первую стадию абсорбции в абсорбер, орошаемый олеумом и 98%-ной СЕРНАЯ КИСЛОТА к.: SO3 + Н2 О : Н2 SO4 + + 130,56 кДж. Далее газ проходит очистку от брызг СЕРНАЯ КИСЛОТА к., нагревается до 420 °С и поступает на вторую стадию конверсии, протекающую на двух слоях катализатора. Перед второй стадией абсорбции газ охлаждается в экономайзере и подается в абсорбер второй ступени, орошаемый 98%-ной СЕРНАЯ КИСЛОТА к., и затем после очистки от брызг выбрасывается в атмосферу.

Рис. 1. Схема производства серной кислоты из серы: 1-серная печь; 2-котел-утилизатор; 3 - экономайзер; 4-пусковая топка; 5, 6-теплообменники пусковой топки; 7-контактный аппарат; 8-теплообменники; 9-олеумный абсорбер; 10-сушильная башня; 11 и 12-соответственно первый и второй моногидратные абсорберы; 13-сборники кислоты.

Рис.2. Схема производства серной кислоты из колчедана: 1-тарельчатый питатель; 2-печь; 3-котел-утилизатор; 4-циклоны; 5-электрофильтры; 6-промывные башни; 7-мокрые электрофильтры; 8-отдувочная башня; 9-сушильная башня; 10-брызгоуловитель; 11-первый моногидратный абсорбер; 12-теплообмен-вики; 13 - контактный аппарат; 14-олеумный абсорбер; 15-второй моногидратный абсорбер; 16-холодильники; 17-сборники.

Рис. 3. Схема производства серной кислоты нитроз-ным методом: 1 - денитрац. башня; 2, 3-первая и вторая продукц. башни; 4-окислит. башня; 5, 6, 7-абсорбц. башни; 8 - электрофильтры.

Произ-во СЕРНАЯ КИСЛОТА к. из сульфидов металлов (рис. 2) существенно сложнее и состоит из следующей операций. Обжиг FeS2 производят в печи кипящего слоя на воздушном дутье: 4FeS2 + 11О2 : 2Fe2 O3 + 8SO2 + 13476 кДж. Обжиговый газ с содержанием SO2 13-14%, имеющий температуру 900 °С, поступает в котел, где охлаждается до 450 °С. Очистку от пыли осуществляют в циклоне и электрофильтре. Далее газ проходит через две промывные башни, орошаемые 40%-ной и 10%-ной СЕРНАЯ КИСЛОТА к. При этом газ окончательно очищается от пыли, фтора и мышьяка. Для очистки газа от аэрозоля СЕРНАЯ КИСЛОТА к., образующегося в промывных башнях, предусмотрены две ступени мокрых электрофильтров. После осушки в сушильной башне, перед которой газ разбавляется до содержания 9% SO 2, его газодувкой подают на первую стадию конверсии (3 слоя катализатора). В теплообменниках газ подогревается до 420 °С благодаря теплу газа, поступающего с первой стадии конверсии. SO2, окисленный на 92-95% в SO3, идет на первую стадию абсорбции в олеумный и моногидратный абсорберы, где освобождается от SO3. Далее газ с содержанием SO2 ~ 0,5% поступает на вторую стадию конверсии, которая протекает на одном или двух слоях катализатора. Предварительно газ нагревается в др. группе теплообменников до 420 °С благодаря теплу газов, идущих со второй стадии катализа. После отделения SO3 на второй стадии абсорбции газ выбрасывается в атмосферу.

Степень превращения SO2 в SO3 при контактном способе 99,7%, степень абсорбции SO3 99,97%. Произ-во СЕРНАЯ КИСЛОТА к. осуществляют и в одну стадию катализа, при этом степень превращения SO2 в SO3 не превышает 98,5%. Перед выбросом в атмосферу газ очищают от оставшегося SO2 (см. Газов очистка). Производительность современной установок 1500-3100 т/сут.

Сущность нитрозного метода (рис. 3) состоит в том, что обжиговый газ после охлаждения и очистки от пыли обрабатывают так называемой нитрозой-С. к., в которой раств. оксиды азота. SO2 поглощается нитрозой, а затем окисляется: SO2 + N2O3 + Н2О : Н2SO4 + NO. Образующийся NO плохо растворим в нитрозе и выделяется из нее, а затем частично окисляется кислородом в газовой фазе до NO2. Смесь NO и NO2 вновь поглощается СЕРНАЯ КИСЛОТАк. и т.д. Оксиды азота не расходуются в нитрозном процессе и возвращаются в производств. цикл, вследствие неполного поглощения их СЕРНАЯ КИСЛОТА к. они частично уносятся отходящими газами. Достоинства нитрозного метода: простота аппаратурного оформления, более низкая себестоимость (на 10-15% ниже контактной), возможность 100%-ной переработки SO2.

Аппаратурное оформление башенного нитрозного процесса несложно: SO2 перерабатывается в 7-8 футерованных башнях с керамич. насадкой, одна из башен (полая) является регулируемым окислит. объемом. Башни имеют сборники кислоты, холодильники, насосы, подающие кислоту в напорные баки над башнями. Перед двумя последними башнями устанавливается хвостовой вентилятор. Для очистки газа от аэрозоля СЕРНАЯ КИСЛОТА к. служит электрофильтр. Оксиды азота, необходимые для процесса, получают из HNO3. Для сокращения выброса оксидов азота в атмосферу и 100%-ной переработки SO2 между продукционной и абсорбционной зонами устанавливается безнитрозный цикл переработки SO2 в комбинации с водно-кислотным методом глубокого улавливания оксидов азота. Недостаток нитрозного метода-низкое качество продукции: концентрация СЕРНАЯ КИСЛОТА к. 75%, наличие оксидов азота, Fe и др. примесей.

Для уменьшения возможности кристаллизации СЕРНАЯ КИСЛОТА к. при перевозке и хранении установлены стандарты на товарные сорта СЕРНАЯ КИСЛОТА к., концентрация которых соответствует наиболее низким температурам кристаллизации. Содержание СЕРНАЯ КИСЛОТА к. в техн. сортах (%): башенная (нитрозная) 75, контактная 92,5-98,0, олеум 104,5, высокопроцентный олеум 114,6, аккумуляторная 92-94. СЕРНАЯ КИСЛОТА к. хранят в стальных резервуарах объемом до 5000 м3, их общая емкость на складе рассчитана на десятисуточньш выпуск продукции. Олеум и СЕРНАЯ КИСЛОТА к. перевозят в стальных железнодорожных цистернах. Конц. и аккумуляторную СЕРНАЯ КИСЛОТА к. перевозят в цистернах из кислотостойкой стали. Цистерны для перевозки олеума покрывают теплоизоляцией и перед заливкой олеум подогревают.

Определяют СЕРНАЯ КИСЛОТА к. колориметрически и фотометрически, в виде взвеси BaSO4 - фототурбидиметрически, а также ку-лонометрич. методом.

Применение. СЕРНАЯ КИСЛОТА к. применяют в производстве минеральных удобрений, как электролит в свинцовых аккумуляторах, для получения различные минеральных кислот и солей, химический волокон, красителей, дымообразующих веществ и ВВ, в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности. Ее используют в пром. органическое синтезе в реакциях дегидратации (получение диэтилового эфира, сложных эфиров), гидратации (этанол из этилена), сульфирования (синтетич. моющие средства и промежуточные продукты в производстве красителей), алкили-рования (получение изооктана, полиэтиленгликоля, капро-лактама) и др. Самый крупный потребитель СЕРНАЯ КИСЛОТАк.-производство минеральных удобрений. На 1 т Р2О5 фосфорных удобрений расходуется 2,2-3,4 т СЕРНАЯ КИСЛОТА к., а на 1 т (NH4)2SO4-0,75 т СЕРНАЯ КИСЛОТА к. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений. Мировое производство СЕРНАЯ КИСЛОТА к. в 1987 достигло 152 млн. т.

СЕРНАЯ КИСЛОТА к. и олеум - чрезвычайно агрессивные вещества, поражают дыхательные пути, кожу, слизистые оболочки, вызывают затруднение дыхания, кашель, нередко-ларингит, трахеит, бронхит и т. д. ПДК аэрозоля СЕРНАЯ КИСЛОТА к. в воздухе рабочей зоны 1,0 мг/м3, в атм. воздухе 0,3 мг/м3 (макс. разовая) и 0,1 мг/м3 (среднесуточная). Поражающая концентрация паров СЕРНАЯ КИСЛОТА к. 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности 2. Аэрозоль СЕРНАЯ КИСЛОТА к. может образовываться в атмосфере в результате выбросов химический и металлургич. производств, содержащих оксиды S, и выпадать в виде кислотных дождей.

Литература: Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971; Амелин А. Г., Технология серной кислоты, 2 изд., М., 1983; Васильев Б. Т., Отвагина М. И., Технология серной кислоты, М., 1985. Ю.В. Филатов.

Химическая энциклопедия. Том 4 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
Купить коттедж в Семенково
транзитная реклама это
пламягаситель opel
кровать фьорд колониал сосна

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(17.12.2017)