химический каталог




САМООРГАНИЗАЦИЯ

Автор Химическая энциклопедия г.р. Н.С.Зефиров

САМООРГАНИЗАЦИЯ, самопроизвольное (не требующее внешний организующих воздействий) образование упорядоченных пространственных или временных структур в сильно неравновесных открытых системах (физических, химический, биологическое и др.). Непрерывные потоки энергии или вещества, поступающие в систему, поддерживают ее в состоянии, далеком от равновесия. При таких условиях в системе развиваются собственные (внутренние) неустойчивости (области неустойчивого поведения), развитием которых является САМООРГАНИЗАЦИЯ

Классич. пример физических открытой системы с пространственной САМООРГАНИЗАЦИЯ-плоский горизонтальный слой вязкой жидкости, подогреваемый снизу. При относительно малых вертикальных градиентах температуры в жидкости имеет место режим бесконвективной теплопроводности. Когда градиент температуры превысит нек-рую критической величину, в жидкости возникает конвекция. При малых превышениях градиента температуры над критической значением конвективные потоки вещества приобретают упорядоченность: при наблюдении сверху они имеют вид валиков или шестиугольных ячеек (ячейки Бенара).

Генерация лазерного излучения считается примером временной САМООРГАНИЗАЦИЯ Лазер непрерывного действия-сильно неравновесная открытая система, образованная возбужденными частицами (атомами, молекулами) и модами электромагн. поля в резонаторе. Неравновесность этой системы поддерживается непрерывным притоком энергии от внешний некогерентного источника (накачкой). При малых интенсивностях накачки излучение системы состоит из не сфазированных между собой цугов волн. С повышением интенсивности накачки вплоть до некоторой пороговой величины излучение системы становится когерентным, т.е. представляет собой непрерывный волновой цуг, в котором фазы волн жестко скорастворелированы на макроскопич. расстояниях от излучателя. Этот переход к генерации когерентных колебаний можно интерпретировать как САМООРГАНИЗАЦИЯ

Примером САМООРГАНИЗАЦИЯ в химии служит существование несколько устойчивых состояний в гомог. системах с химический реакциями и диф фузией реагентов. Этим состояниям соответствуют неоднородные пространств. распределения концентраций реагентов, называют диссипативными структурами. В ответ на сколь угодно малое возмущение параметров система может переходить из одного состояния в другое, что наблюдается в виде волн (пространственно-временная структура; см. Колебательные реакции). Как показал М. Тьюринг (1952), в системе с двумя реагентами может появиться синусоидальная волна. Пространственно-временные структуры типичны для Белоусова - Жаботинского реакции, газофазного горения, ряда реакций гетерог. каталитических окисления, ферментативного катализа.

В космологии результатом САМООРГАНИЗАЦИЯ можно считать образование спиральных галактик, в экологии-организацию сообществ, в биологии - явления морфогенеза. Поскольку упомянутые явления имеют общую феноменологию, они рассматриваются в рамках единых представлений. Возникшее новое междисциплинарное направление получило впоследствии назв. синергетики (Г. Хакен, 1985). Развитию представлений о САМООРГАНИЗАЦИЯ в биологии способствовали работы П. Гленс-дорфа и И. Пригожина (1973). Существует, однако, мнение, что сложная внутр. организация клетки и организма может быть понята без представлений о диссипативных структурах, в рамках иерархич. термодинамики (см. Термодинамика иерархических систем).

САМООРГАНИЗАЦИЯ в неравновесных системах принципиально отличается от явлений упорядочения при фазовых переходах в равновесных системах, где порядок возрастает с понижением температуры: жидкость кристаллизуется, спины атомов ориентируются, образуя упорядоченную структуру, свойственную ферромагнетикам; в некоторых металлах может осуществляться переход к когерентному квантовому состоянию, характерному для сверхпроводников. Общим для обоих процессов образования порядка в системе является понижение симметрии по отношению к трансляциям в пространстве или во времени.

САМООРГАНИЗАЦИЯ связана с турбулентностью. В упоминаемом выше примере с образованием в жидкости ячеек Бенара при высоких градиентах температуры система переходит в состояние с турбулентным режимом течения. Переход к турбулентности (т.е. к хаотич. режиму) может занимать некоторый интервал значений параметров, характеризующих степень внешний воздействия на систему, и происходить путем по-следоват. усложнения регулярных (когерентных) структур, т.е. в условиях САМООРГАНИЗАЦИЯ Критерием отличия регулярного пространственно-временного режима поведения системы от хаотического служит устойчивость структуры к малым возмущениям начальных условий: если такая устойчивость имеет место, структуру можно считать регулярной независимо от. степени ее сложности.

На САМООРГАНИЗАЦИЯ в неравновесной открытой системе могут влиять флуктуации параметров состояния как самой системы, так и окружающей среды. В свою очередь, сама САМООРГАНИЗАЦИЯ оказывает влияние на амплитуду и длительность флуктуации.

Литература: Эйген М., Самоорганизация материи и эволюция биологических макромолекул, пер. с англ., М., 1973; Николис Г., Пригожин И., Самоорганизация в неравновесных структурах, пер. с англ., М., 1979; Эбелинг В., Образование структур при необратимых процессах, пер. с англ., М., 1979; Хакен Г., Синергетика, пер. с англ., М., 1980; Полак Л. САМООРГАНИЗАЦИЯ, Михайлов А. САМООРГАНИЗАЦИЯ, Самоорганизация в неравновесных физико-химических системах, М., 1983; Васнецова А. Л., Гладышев Г. П., Экологическая биофизическая химия, М., 1989. А.А.Овсянников.

Химическая энциклопедия. Том 4 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
мы помогаем больным детям
шкаф управления
дождеприемник круглый чугунный дк-2 купить в москве
ремонт холодильников круглосуточно москва

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(28.06.2017)