химический каталог




РЕЗИНА

Автор Химическая энциклопедия г.р. Н.С.Зефиров

РЕЗИНА (от латинского resina-смола) (вулканизат), эластичный материал, образующийся в результате вулканизации натурального и синтетических каучуков. Представляет собой сетчатый эластомер - продукт поперечного сшивания молекул каучуков химическими связями.

Получение. Резину получают главным образом вулканизацией композиций (резиновых смесей), основу которых (обычно 20-60% по массе) составляют каучуки. Другие компоненты резиновых смесей - вулканизующие агенты, ускорители и активаторы вулканизации (Вулканизация), наполнители, противостарители, пластификаторы (мягчители). В состав смесей могут также входить регенерат (пластичный продукт регенерации резины, способный к повторной вулканизации), замедлители подвулканизации, модификаторы, красители, порообразователи, антипирены, душистые вещества и другие ингредиенты, общее число которых может достигать 20 и более. Выбор каучука и состава резиновой смеси определяется назначением, условиями эксплуатации и техническим требованиями к изделию, технологией производства, экономическими и другими соображениями (см. Каучук натуральный, Каучуки синтетические).

Технология производства изделий из резины включает смешение каучука с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных тканей, корда и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением спец. сборочного оборудования и вулканизацию изделий в аппаратах периодической (прессы, котлы, автоклавы, форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая пластичность резиновых смесей, благодаря которой им придается форма будущего изделия, закрепляемая в результате вулканизации. Широко применяют формование в вулканизационном прессе и литье под давлением, при которых формование и вулканизацию изделий совмещают в одной операции. Перспективны использование порошкообразных каучуков и композиций и получение литьевых резин методами жидкого формования из композиций на основе жидких каучуков. При вулканизации смесей, содержащих 30-50% по массе серы в расчете на каучук, получают эбониты.

Свойства. Резину можно рассматривать как сшитую коллоидную систему, в которой каучук составляет дисперсионную среду, а наполнители - дисперсную фазу. Важнейшее свойство резины - высокая эластичность, т. е. способность к большим обратимым деформациям в широком интервале температур (см. Высокоэластическое состояние).

Резина сочетает в себе свойства твердых тел (упругость, стабильность формы), жидкостей (аморфность, высокая деформируемость при малом объемном сжатии) и газов (повышение упругости вулканизационных сеток с ростом температуры, энтропийная природа упругости).

Резина - сравнительно мягкий, практически несжимаемый материал. Комплекс ее свойств определяется в первую очередь типом каучука (см. табл. 1); свойства могут существенно изменяться при комбинировании каучуков различные типов или их модификации.

Модуль упругости резины различные типов при малых деформациях составляет 1-10 МПа, что на 4-5 порядков ниже, чем для стали; коэффициент Пауссона близок к 0,5. Упругие свойства резины нелинейны и носят резко выраженный релаксационный характер: зависят от режима нагружения, величины, времени, скорости (или частоты), повторности деформаций и температуры. Деформация обратимого растяжения резины может достигать 500-1000%.

Нижний предел температурного диапазона высокоэластичности резины обусловлен главным образом температурой стеклования каучуков, а для кристаллизующихся каучуков зависит также от температуры и скорости кристаллизации. Верхний температурный предел эксплуатации резины связан с термодинамической стойкостью каучуков и поперечных химических связей, образующихся при вулканизации. Ненаполненные резины на основе некристаллизующихся каучуков имеют низкую прочность. Применение активных наполнителей (высокодисперсных саж, SiO2 и др.) позволяет на порядок повысить прочностные характеристики резины и достичь уровня показателей резины из кристаллизующихся каучуков. Твердость резины определяется содержанием в ней наполнителей и пластификаторов, а также степенью вулканизации. Плотность резины рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом могут быть приближенно вычислены (при объемном наполнении менее 30%) теплофизических характеристики резины: коэффициент термодинамического расширения, удельная объемная теплоемкость, коэффициент теплопроводности. Циклическое деформирование резины сопровождается упругим гистерезисом, что обусловливает их хорошие амортизационные свойства. Резина характеризуются также высокими фрикционными свойствами, износостойкостью, сопротивлением раздиру и утомлению, тепло- и звукоизоляционными свойствами. Они диамагнетики и хорошие диэлектрики, хотя может быть получены токопроводящие и магнитные резины.

Резины незначительно поглощают воду и ограниченно набухают в органических растворителях. Степень набухания определяется разницей параметров растворимости каучука и растворителя (тем меньше, чем выше эта разность) и степенью поперечного сшивания (величину равновесного набухания обычно используют для определения степени поперечного сшивания). Известны резины, характеризующиеся масло-, бензо-, водо-, паро- и термостойкостью, стойкостью к действию химический агрессивных сред, озона, света, ионизирующих излучений. При длительного хранении и эксплуатации резина подвергаются старению и утомлению, приводящим к ухудшению их механические свойств, снижению прочности и разрушению. Срок службы резины в зависимости от условий эксплуатации от несколько дней до несколько десятков лет.

Классификация. По назначению различают следующей основные группы резин: общего назначения, теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию химический агрессивных сред, диэлектрическая, электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные, пищевая и мед. назначения, для условий тропического климата и другие (табл. 2); получают также пористые, или губчатые (см. Пористая резина), цветные и прозрачные резины.

Применение. Резина широко используют в технике, сельском хозяйстве, быту, медицине, строительстве, спорте. Ассортимент резиновых изделий насчитывает более 60 тысяч наименований. Среди них: шины, транспортные ленты, приводные ремни, рукава, амортизаторы, уплотнители, сальники, манжеты, кольца и др., кабельные изделия, обувь, ковры, трубки, покрытия и облицовочные материалы, прорезиненные ткани, герметики и др. Более половины объема вырабатываемой резины используется в производстве шин.
 

Свойства резин на основе различных каучуков

 

Классификация резин по назначению
 

Мировое производство резиновых изделий более 20 млн. тонн/год (1987).

Полезная информация. Шины, чаще всего, производят из резины на основе синтетических каучуков, например бутадиенстирольного и бутадиенметилстирольного каучука. От выбора каучука зависит тип получаемой резины, так бутадиеновый каучук делает шины износостойкими и морозоустойчивыми. Поэтому если вы решили купить летние автошины, то резина на основе бутадиенового каучука вам не подойдет, его применяют при изготовлении зимней резины с крупным протектором.

Литература: Справочник резинщика. Материалы резинового производства, М., 1971; Кузьминский А. С., Кавун С. М., Кирпичев В. П., Физико-химические основы получения, переработки и применения эластомеров, М., 1976; Энциклопедия полимеров, т. 3, М., 1977, с. 313-25; Кошелев Ф.Ф., Корнев А.Е., Буканов А.М., Общая технология резины, 4 изд., М., 1978; Догадкин Б. А., Донцов А.А., Шершнев В.А., Химия эластомеров, 2 изд., М., 1981; Федюкин Д.Л., Махлис Ф.А., Технические и технологические свойства резин, М., 1985; Применение резиновых технических изделий в народном хозяйстве. Справочное пособие, М., 1986; Зуев Ю. С., Дегтева Т. Г., Стойкость эластомеров в эксплуатационных условиях, М., 1986; Лепетов В. А., Юрцев Л. Н., Расчеты и конструирование резиновых изделий, 3 изд., Л., 1987. Ф.Е. Куперман.


Химическая энциклопедия. Том 4 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
металлическая садовая мебель купить
ifirb nfrcb
шкаф управления litened 50-30
заправка холодильников фреоном на дому люблино

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(27.05.2017)