химический каталог




РАДИОПОГЛОЩАЮЩИЕ И РАДИОПРОЗРАЧНЫЕ МАТЕРИАЛЫ

Автор Химическая энциклопедия г.р. Н.С.Зефиров

РАДИОПОГЛОЩАЮЩИЕ И РАДИОПРОЗРАЧНЫЕ МАТЕРИАЛЫ, неметаллич. материалы, обеспечивающие поглощение или пропускание электромагн. излучения радиочастотного диапазона (105 — 1012 Гц) при миним. его отражении. Распространяясь в объеме этих материалов, электромагн. излучение (ЭМИ) создает переменное электрич. поле, энергия которого преобразуется в тепловую энергию практически полностью-в радиопоглощающих и минимально-в радиопрозрачных материалах.

Радиопоглощающие материалы. В радиопоглощающих материалах и конструкциях наряду с диэлектрическая и магн. потерями имеют место дисперсия, дифракция, интерференция и полное внутр. отражение радиоволн, вызывающие дополнительной ослабление энергии ЭМИ вследствие рэлеевского рассеяния, сложения волн в противофазе и др. Изделия из таких материалов поглощают потоки электромагн. энергии плотность 0,1-8,0 Вт/см2; интервал рабочих температур — 60 — 1300°С; уровень отраженного излучения 0,001-5%.

Основу радиопоглощающих материалов составляют органическое или неорганическое (главным образом оксиды и нитриды) вещества, в которые в качестве активной поглощающей компоненты вводят порошки графита, металлов и их карбидов.

Градиентные радиопоглощающие материалы характеризуются многослойной структурой, обеспечивающей заданное изменение диэлектрическая проницаемости в толще материала. Наружный слой изготовляют из твердогс диэлектрика с диэлектрическая проницаемостью е, близкой к 1 (например, из фенольного пластика, упрочненного кварцевым стекловолокном), последующие - из диэлектриков с более высокой e (например, эпоксидной смолы с e 5 или той же смолы с наполнителем с e 25) и порошка поглотителя (например, графитовой пыли). Описанная структура способствует миним. отражению радиоволн от поверхности и увеличению их поглощения по мере проникновения в глубь материала.

Интерференц. радиопоглощающие материалы обычно состоят из подложки и чередующихся диэлектрическая и проводящих слоев. В качестве подложки используют металлич. пластину или неметаллич. материал с e100 и тангенсом угла диэлектрическая потерь tgd, близким к 1. Диэлектрич. слой, являющийся связующим, содержит в себе поглотитель (например, оксиды Fe), проводящий слой-металлизир. волокна Такая структура обеспечивает сдвиг фазы отраженной в материале волны почти на 180° и ее гашение.

Рассеивающие радиопоглощающие материалы обеспечивают многократное отражение и рассеяние волн. Изделия из них-чаще всего полые пирамидальные конструкции из пенополистирола, внутр. стенки которых покрыты графитом, или трубы из стеклопластиков, покрытые снаружи слоем SiC.

Керамич. материалы представляют собой, как правило, плотноспеченные материалы из оксидов металлов с низким электрич. сопротивлением [например, Ti3O4 и (AlTi)2O3] или оксидов и нитридов В и Al с добавкой металлов (W, Mo, Ti, Zr, Hf) или их карбидов. Обладают высокими теплопроводностью, механические прочностью и термостойкостью. Для экранирования от радиоизлучений высокой интенсивности изготовляют многослойные материалы из микросфер оксида Al и титаната Ва, соединенных между собой алюмофосфатным цементом. К группе керамич. материалов относят также плотный пиролитич. углерод.

Ферритовые материалы, отличающиеся большими магн. потерями, характеризуются высокой поглощающей способностью, что позволяет использовать их в виде облегченных элементов, например тонкослойных (до 0,2 мм) покрытий из FeO•Fe2O3 или МnО•Fe2 O3 с эпоксидным связующим, или плиток, смонтированных на металлич. листе и защищенных стеклотканью или слоем пластмассы.

Радиопоглощающие материалы применяют в виде покрытий металлич. поверхностей самолетов, танков, ракет и кораблей с целью их радиолокац. маскировки, для защиты людей от воздействия радиоизлучений высокой интенсивности, создания радиогерметич. безэховых испытат. камер, поглотителей энергии в электронных приборах, обеспечения радиосовместимости частей аппаратуры.

Радиоорозрачныс материалы. Прозрачность этих материалов обеспечивается малыми диэлектрическая потерями в интервале рабочих температур -60-1200°С (tgd 10-2-10-5, e10) и низким уровнем отражения радиоволн (1%).

Основу таких материалов составляют органическое и неорганическое диэлектрики-пластмассы, керамопласты, керамика, плавленый кварц, ситаллы.

В качестве радиопрозрачных пластмасс используют главным образом стеклопластики или стеклотекстолиты, содержащие несколько слоев стеклянных, нейлоновых волокон или стеклоткани и пропитанных кремнийорганическое, полиимидными или полиэфирными смолами. Изготовляют их методами переработки полимерных материалов, обеспечивающих однородность диэлектрическая свойств материала (например, пропитка, заливка, намотка); температура длительного эксплуатации 300-500°С, tgd 10-2-10-3, е 3-5.

Керамопласты изготовляют на основе: алюмофос-фатной керамики, армированной стекловолокном; стеклопластиков, пропитанных высокоактивным коллоидным SiO2; кварцевых или сапфировых нитей и тканей со связующими, используемыми в стеклопластиках. Керамопласты с повыш. стойкостью к эрозии под действием внешний среды получают путем плазменного нанесения на поверхность пластика (до и после его отверждения) тонкого слоя тугоплавкого оксида, карбида или борида. По сравнению с пластиками обладают большей прочностью и однородностью, работают в условиях температур до 650 °С.

Основа радиопрозрачной к е р а м и к и - высокотемпературные оксиды Al и Be, нитриды Al и В; tgd10-3, e4 (для нитрида бора) и 10 (для алюмооксидной керамики); теплопроводность (в Вт/м•К) для Al2О3 20, для ВеО 200, для BN 400. Изделия из оксидной керамики получают методами шликерного литья, прессования, электрофоретич. и плазменного напыления с последующей высокотемпературным обжигом, из нитрида бора-путем химический осаждения из газовой фазы с последующей механические обработкой. Для повышения механические прочности, термостойкости и уменьшения толщины стенок керамич. изделий в них при формировании вводят металлич. стержни, решетку или сетки.

Материалы из плавленого кварца и ситаллов на основе оксидов Li и Mg (Li2O-Al2O3- SiO2 и MgO Al2О3 SiO2) отличаются однородностью, низким коэффициент термодинамически расширения (5•10-7 град-1 для плавленого кварца, близкий к нулю-у ситаллов), температурной стабильностью (для MgO-SiO2-Al2O3), в интервале рабочих температур (-60-1200°С) уменьшение диэлектрическая проницаемости составляет около 1%.

Радиопрозрачлые материалы широко используют в антенных обтекателях самолетов и ракет в условиях аэроди-намич. и тепловых ударов, дождевой, пылевой, газовой эрозии и ионизирующих излучений, в качестве перегородки-окна в ускорителях и электронных приборах, для обеспечения передачи электромагн. энергии.

Литература: Шнейдерман Я. А., "Зарубежная радиоэлектроника", 1971, № 2, с. 79-113; там же, 1972, № 7, с. 102-32; Батыгин В. Н., Метелкин И.И., Решетников A.M., Вакуумно-плотная керамика и ее спаи с металлами, М., 1973; Мицмахер М.Ю., Торгованов В.А., Безэховые камеры СВЧ, М., 1982; Алимин Б.Ф., "Зарубежная радиоэлектроника", 1989, № 2. с. 75-82.

В. Н. Батыгин,В. Г. Бравинский.

Химическая энциклопедия. Том 4 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
аренда звукового и светового оборудования
большой зал консерватории как добраться
ограничения трудовой деятельности несовершеннолетних
Кликни на объявление, получи скидку в КНС по промокоду "Галактика" - PE210G2SPI9A-XR - офис-салон на Дубровке.

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(07.12.2016)