химический каталог




РАДИОМЕТРИЯ

Автор Химическая энциклопедия г.р. Н.С.Зефиров

РАДИОМЕТРИЯ (от лат. radio - излучаю и греческого metreo-измеряю), регистрация с помощью радиометрич. приборов излучений, испускаемых ядрами радионуклидов. Основана на различные эффектах взаимодействие излучения с веществом (ионизация, люминесценция, излучение Черепкова - Вавилова, образование треков в прозрачных средах, тепловое действие излучения, воздействие на фотографич. материалы и др.).

Радиометрич. приборы состоят из детекторов, в которых происходит преобразование энергии излучения в электрическую или др. сигналы, и регистрирующих устройств. Детекторы может быть ионизационными, сцинтилляционными, трековыми и др., в зависимости от того, на каком из эффектов основано их действие. По агрегатному состоянию рабочего тела различают газонаполненные, жидкостные, твердотельные детекторы; по типу регистрируемого излучения-детекторы а-частиц, р-частиц, у-квантов, нейтронов.

Среди газонаполненных ионизац. детекторов в соответствии с характером процесса, обеспечивающего регистрацию излучения, различают ионизац. камеры, пропорциональные счетчики, счетчики Гейгера-Мюллера. В радиометрич. практике распространены счетчики Гейгера-Мюллера, поскольку в них под действием излучения возникают мощные электрич. импульсы, что снижает требования к регистрирующей аппаратуре. Простота конструкции и надежность способствовали их широкому распространению в 30-50-х гг. 20 в. В настоящее время они применяются главным образом в дозиметрии, а в радиохимический исследованиях постепенно вытесняются сцинтилляционными и полупроводниковыми детекторами. Связано это с тем, что счетчики Гейгера Мюллера позволяют отмечать лишь факт попадания ионизирующей частицы в счетчик, тогда как большинство др. детекторов (газонаполненных, жидкостных и твердотельных) дает возможность, кроме того, определять распределение по энергии регистрируемых частиц или квантов.

Сцинтилляционные детекторы основаны на регистрации люминесценции, вызываемой действием излучения на люминофоры, в которых энергия излучения преобразуется в световые вспышки (сцинтилляции). Люминофоры, используемые для этих целей, обычно называют сцинтиллятора-ми. Используют твердотельные неорганическое (Nal или Csl, активированный Т1) и органическое сцинтилляторы (антрацен, стильбен, сцинтилляц. пластмассы) и жидкие сцинтилляторы (растворы 2,5-дифенилоксазола в толуоле, диоксане и др.). Широко развивается техника жидкостно-сцинтилляц. измерений, при которых препараты радиоактивных веществ вводятся (растворяются, эмульгируются и т.п.) непосредственно в жидкостно-сцинтилляц. смесь, что обеспечивает простоту приготовления препаратов, выгодные геометрическая условия измерений, исключает потери, связанные с ослаблением излучения. Аппаратура, предназначенная для жидкостно-сцинтилляц. измерений, позволяет также регистрировать излучение Черепкова - Вавилова, возбуждаемое в прозрачных средах высо-коэнергетич. р-частицами (пороговая энергия для возбуждения этого излучения в воде составляет 0,267 МэВ).

Полупроводниковые детекторы основаны на том, что регистрируемая частица, проникая в кристалл, генерирует в нем дополнительной (неравновесные) электронно-дырочные пары. Носители заряда (электроны и дырки) под действием приложенного электрич. поля "рассасываются", перемещаясь к электродам прибора. В результате во внешний цепи детектора возникает электрич. импульс, который далее усиливается и регистрируется.

Важная характеристика детектора-его эффективность, т.е. вероятность регистрации частиц или квантов, попадающих в чувствительный объем детектора. При регистрации g-квантов она может составлять от долей процента (для счетчиков Гейгера - Мюллера или полупроводниковых детекторов сравнительно небольшого объема) до ~ 100% для сцинтилляц. детекторов с неорганическое сцинтилляторами достаточно больших размеров. Для а-частиц и высокоэнергетич. р-частиц эффективность большинства современной детекторов близка к 100%. Эффективность жидкостно-сцинтилляц. детекторов при регистрации р-частиц трития с макс. энергией всего 18 кэВ достигает 56-60%.

Излучение радиоактивного препарата регистрируется в виде числа импульсов N, зафиксированных детектором за время t. Скорость счета импульсов в единицу времени J = N/t и радиоактивность а препарата связаны соотношением: J = fа, где f-коэффициент, учитывающий эффективность регистрации, а также особенности схемы распада исследуемого радионуклида, поправки на геометрическая условия измерения, ослабление излучения в стенках детектора и самоослабление в слое препарата и т. п. Для решения многие радиохимический задач достаточно проведения сравнит. измерений, когда не нужно определять радиоактивность препарата, а можно лишь сравнить активность препарата с активностью эталона или стандарта, определенной в идентичных условиях (при постоянном ф).

Выбор детектора для регистрации радиоактивных излучений производят на основе критерия качества (КК) (коэффициент качества, критерия надежности). Значение КК обратно пропорционально времени t, необходимому для получения результата с заданной погрешностью: КК = 1/t ~ e2 /Ф, где e - эффективность регистрации излучения, а Ф-фон прибора. Т. к. в большинстве современной приборов эффективность регистрации корпускулярного излучения (a- и b-частиц) близка к теоретически достижимому пределу, повышение КК определяется возможностью подавления фона детектора, который обусловлен регистрацией космич. излучения, внешний излучения от радионуклидов, содержащихся в окружающей среде (воздух, строит. материалы, грунт), и радиоактивных загрязнений в конструкц. материалах, из которых изготовлен детектор; фон связан также с нек-рыми процессами в самом детекторе ("ложные" импульсы в счетчиках Гейгера-Мюллера, шумы фотоэлектронных умножителей в сцинтилляц. детекторах и т. п.). Для снижения фона детектор помещают в "пассивную" защиту из тяжелых материалов (свинец, чугун и т. п.), экранирующую детектор от внешний у-излучения и ослабляющую мягкую компоненту космич. излучения. Для подавления главной на уровне моря составляющей космич. излучения - мюонной - применяется так называемой активная защита-дополнительной детектор, окружающий основной и включенный с ним в спец. схему антисовпадений. При этом исключается регистрация импульсов основные детектора, совпадающих по времени с импульсами, регистрируемыми детектором активной защиты (такие совпадающие импульсы как раз и обусловлены в основные прохождением мюонов одновременно через оба детектора).

При регистрации у-квантов часто приходится выбирать между эффективностью регистрации и разрешающей способностью детектора по энергии. Так, эффективность регистрации сцинтилляц. детекторами больших размеров с неорганическое сцинтилляторами может приближаться к 100%, но разрешающая способность их сравнительно низка (7-10%). В то же время современной полупроводниковые детекторы на основе Ge обладают гораздо лучшей разрешающей способностью, но эффективность их составляет обычно доли процента. Ведутся интенсивные поиски полупроводниковых материалов для более эффективной регистрации у-излучения.

Измерение излучений, обладающих сравнительно Малыми пробегами, с помощью внешний детекторов (расположенных вне исследуемого препарата) предъявляет жесткие требования к детектору, который должен обеспечивать миним. потери, связанные с геометрическая условиями измерения и с ослаблением излучения на пути между препаратом и детектором. Важно также, чтобы при приготовлении препаратов обеспечивалось снижение потерь, связанных с самоослаблением излучения в слое самого препарата, равномерность нанесения препарата на подложку и т.п.

Совр. радиометрич. приборы позволяют автоматически выполнять измерения сотен радиоактивных препаратов по заданной программе с обработкой результатов измерений с помощью ЭВМ.

Литература. Сидоренко В. В., Кузнецов Ю. А., Оводенко А. А., Детекторы ионизирующих излучений. Справочник, Л., 1984; Ляпидевский В. К., Методы детектирования излучений, М., 1987. Ю.А. Сапожников.


Химическая энциклопедия. Том 4 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
корпоративное такси
урна настенная ун-2
PRL12U56GF1
http://www.prokatmedia.ru/proektor.html

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(24.09.2017)