химический каталог




ПЛОТНОМЕРЫ

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ПЛОТНОМЕРЫ, служат для измерения плотности жидкостей, газов и твердых веществ.

Плотность и методы ее определения. Плотность-физических величина, определяемая для однородного вещества его массой в единице объема (величина, обратная удельная объему вещества); плотность неоднородного вещества-соотношение массы и объема, когда последний стягивается к точке, в которой измеряется плотность. Отношение плотностей двух веществ при определенных стандартных физических условиях называют относительной плотностью; для жидких и твердых веществ ее измеряют при температуре t, как правило, по отношению к плотности дистиллиров. воды при 40C (), для газов-по отношению к плотность сухого воздуха или водорода при нормальных условиях (T= 273,15 К, p = 1,01 • 105 Па).

Для сыпучих и пористых твердых веществ различают плотности истинную (масса единицы объема плотного материала, не содержащего пор), кажущуюся (масса единицы объема пористого материала из зерен или гранул) и насыпную (масса единицы объема слоя материала). Одной из важных характеристик кристаллич. веществ служит рентгеновская плотность (определяют рентгенографически). Она представляет собой отношение массы атомов, находящихся в элементарной ячейке кристалла к.-л. вещества, к ее объему; выражается в обычных единицах плотности.

Плотность веществ обычно уменьшается с ростом температуры (из-за теплового расширения тел) и увеличивается с повышением давления. При переходе из одного агрегатного состояния в другое плотность изменяется скачкообразно. Единицей плотности в Международной системе единиц служит кг/м3• на практике применяют также следующей единицы: г/см3, г/л, т/м3 и т.д.

Диапазон значений плотности разных веществ и материалов (кг/м3) исключительно широк: для жидкостей-от 43,2 (водород при -2400C) до 13595 (ртуть), газов-от 0,0899 (водород) до 9,81 (радон), твердых тел-от 240 (пробка) до 22610 (осмий) и т.д.

Совокупность методов измерения относит, плотности жидкостей и твердых тел называют денсиметрией (от латинского densus-плотный, густой и греческого metreo- измеряю). Некоторые методы денсиметрии применимы также к газам. Иные методы определения их плотности основаны на связи ее с параметрами состояния веществ (например, плотность идеальных газов может быть вычислена по Клапейрона-Менделеева уравнению)и с зависимостью от плотности протекающих в них процессов (см. ниже).

При расчетах используют так называемой среднюю плотность тела, определяемую отношением его массы т к объему V, т.е. а также др. соотношениями.

Выбор, классификация и применение ПЛОТНОМЕРЫ Осн. метрологич. и эксплуатационных характеристики, определяющие выбор ПЛОТНОМЕРЫ: точность, воспроизводимость, пределы, диапазоны и погрешности измерений, рабочие температуры и давления, характер и степень воздействия анализируемых веществ на конструкц. материалы и т. п. Стандартная температура, при которой посредством ПЛОТНОМЕРЫ измеряют плотность веществ, равна 200C. Для приведения к плотности при этой температуре плотности, определенной при любой температуре t, используют формулу:


где b-средний коэффициент объемного теплового расширения.

Относит. плотность разных веществ при 20 0C и соответствующие температурные поправки находят в справочной литературе по таблицам или номограммам.

Наиб. распространены ручные и автоматич. ПЛОТНОМЕРЫ для жидкостей. По принципу действия они делятся на следующей основные группы: поплавковые, массовые, гидростатические, радиоизотопные, вибрационные, ультразвуковые.

Действие поплавковых, или ареометрических, ПЛОТНОМЕРЫ основано на законе Архимеда; погрешность приборов этой группы 0,2-2% от диапазона значений плотности, охватываемого шкалой прибора. Массовые ПЛОТНОМЕРЫ основаны на непрерывном взвешивании определенных объемов жидкости (пикнометрические, приборы для гидростатич. взвешивания, автоматич. приборы) и имеют погрешность 0,5-1%. С помощью гидростатических ПЛОТНОМЕРЫ измеряют давление столба жидкости постоянной высоты; погрешность 2-4%. Действие радиоизотопных ПЛОТНОМЕРЫ основано на определении ослабления пучка g-излучения в результате его поглощения или рассеяния слоем жидкости; погрешность около 2%. Вибрационные ПЛОТНОМЕРЫ основаны на зависимости резонансной частоты колебаний, возбуждаемых в жидкости, от ее плотности; погрешность (1-2)• 10-4 г/см3. В ультразвуковых ПЛОТНОМЕРЫ используют зависимость скорости звука в среде от ее плотности; погрешность 2-5%. Существуют ПЛОТНОМЕРЫ, действие которых основано и на др. принципах.

Относит. плотность постоянна для всех химически однородных веществ и растворов при данной температуре. Поэтому по значениям плотности, измеренной посредством ПЛОТНОМЕРЫ, можно судить о наличии примесей в веществах и о концентрации растворов. Это позволяет широко применять ПЛОТНОМЕРЫ в науч. исследованиях и в разных отраслях народного хозяйства как средство для проведения различные анализов, для контроля технол. процессов и автоматизации управления ими, для правильной организации системы количественное учета материалов при их приемке, хранении и выдаче и т. д. В данной статье описаны важнейшие типы лабораторная и технол. ПЛОТНОМЕРЫ, используемых в химический и агрохимический лабораториях, химический и смежных отраслях промышленности.

Лабораторные ПЛОТНОМЕРЫ Эти приборы предназначены для ручного периодической измерения относит. плотности веществ главным образом ареометрами, пикнометрами и гидростатич. весами.

Ареометры. В соответствии с законом Архимеда масса жидкости, вытесненная плавающим ареометром, равна его массе. Различают ареометры постоянной массы (наиболее распространены) и постоянного объема.

К ареометрам постоянной массы относятся денсиметры (рис. 1,а), шкалы которых градуируются в единицах плотности, и приборы для определения концентраций растворов (шкалы градуируются в % по объему или по массе), имеющие спец. названия: лактомеры - измеряют жирность молока, спиртомеры - содержание спирта в воде, сахаромеры - содержание сахара в сиропах и т.д.

При определении плотности ареометрами постоянного объема (рис. 1,5) путем изменения массы поплавка достигают его погружения до соответствующей метки. Плотность находят по массе гирь (размещают на тарелке) и ареометра и по объему вытесненной им жидкости. Такие приборы м. б. использованы также для измерения плотности твердых тел.

Пикнометры. Плотность находят по отношению массы жидкости к ее объему. Последний измеряют по шкале или меткам на сосуде (рис. 2), массу - взвешиванием на аналит. весах. Плотность твердых тел (порошков) измеряют, погружая их в сосуды, называют волюмометрами (рис. 3), заполненные жидкостью, в которой исследуемое вещество не растворяется. Пикнометры спец. формы (шаровидные и др.) применяют также для определения плотности газов.

Приборы для гидростатич. взвешивания. Данный метод определения плотности жидкостей и твердых тел также основан на законе Архимеда. Плотность жидкости измеряют, взвешивая в ней к.-л. тело (обычно стеклянный поплавок), масса и объем которого известны. Плотность твердого тела определяют его двукратным взвешиванием-сначала в воздухе, а затем в жидкости с известной плотностью (как правило, в дистиллиров. воде); при первом взвешивании находят массу тела, по разности результатов обоих взвешиваний - его объем. В зависимости от требуемой точности гидростатич. взвешивание проводят на техн., аналит. или образцовых весах (см. Весы). При массовых измерениях широко используют менее точные, но более быстродействующие спец. гидростатич. весы, напримервесы Мора, Вестфаля либо их комбинацию (рис. 4).


Плотность вязких жидкостей лучше всего измерять ареометрами или с помощью гидростатич. весов, маловязких -пикнометрами.

Наряду с ПЛОТНОМЕРЫ традиц. типов в лабораторная практике все чаще применяют приборы (см. ниже), которые до последнего времени были распространены только в промышленности.

Технологические ПЛОТНОМЕРЫ Эти приборы представляют собой автоматические ПЛОТНОМЕРЫ обычно для непрерывного определения и регулирования плотности веществ в процессах их производства или переработки. Такие ПЛОТНОМЕРЫ размещают непосредственно на "потоках", т.е. в контрольных точках на технол. линиях, а также на аппаратах пром. установоколо

Автоматич. ПЛОТНОМЕРЫ выпускают в виде самостоят. приборов или измерит. комплектов (датчик, блок подготовки пробы, вторичный прибор и т.д.).

Поплавковые приборы. Различают ПЛОТНОМЕРЫ с плавающим (рис. 5)и погруженным (рис. 6) в жидкость поплавком. В одном случае глубина его погружения обратно пропорциональна плотности испытуемой жидкости, в другом эта плотность прямо пропорциональна массе поплавка.

Поплавковые ПЛОТНОМЕРЫ служат также для определения плотности газов (рис. 7). Оно сводится к непрерывному взвешиванию шара с азотом в камере, заполненной исследуемым газом. Мера его плотности - угол наклона коромысла, перемещение которого с помощью магнита передается стрелке прибора.

Массовые приборы. Действие их основано на том, что масса жидкости при неизменном ее объеме прямо пропорциональна плотности. В таком ПЛОТНОМЕРЫ с пневматич. преобразователем (рис. 8) непрерывно взвешивается протекающая по трубопроводу жидкость определенного объема, U-образная трубка с проходящей через нее контролируемой жидкостью связана рычажной системой с заслонкой. Компенсация перемещения последней осуществляется так же, как показано на рис. 6. Давление воздуха в сильфоне, изменяющееся пропорционально плотности жидкости, определяется по вторичному прибору. Массовые ПЛОТНОМЕРЫ применяют обычно для измерения плотности суспензий, а также вязких и содержащих твердые включения жидкостей.


Гидростатические приборы. В этих ПЛОТНОМЕРЫ используют линейную зависимость гидростатич. давления от высоты уровня и плотности жидкости. Давление столба жидкости измеряют непосредственно, например мембранным манометром, или косвенно-продуванием через жидкость воздуха,

давление которого пропорционально столбу жидкости (пьезометрический ПЛОТНОМЕРЫ, рис. 9). Чтобы исключить влияние колебаний температуры и уровня жидкости, часто применяют дифференц. метод: продувают воздух одновременно через испытуемую и сравнительную жидкости, имеющие одинаковую температуру (термостатированные), и измеряют возникшую при этом разность давлений дифманометром. Последний снабжен пневмопреобразователем, передающим соответствующий сигнал на вторичный прибор.

В гидростатическом ПЛОТНОМЕРЫ для газов (рис. 10) сравниваются давления столбов анализируемого и эталонного газов одинаковой высоты. Перепад давлений, измеряемый дифманометром, пропорционален плотности контролируемого газа.

Pадиоизотопные приборы. При прохождении через анализируемую среду ионизирующих излучений интенсивность их изменяется. Ослабление излучений связано функционально с плотностью среды. Наиб. распространены ПЛОТНОМЕРЫ, использующие g-излучения (рис. 11). В таком приборе излучение от источника (60Co, Cs) проходит через слой жидкости в сосуде и попадает в приемник излучения. Сигнал приемника, являющийся функцией измеряемой плотности, усиливается в электронном усилителе и подается в электронный преобразователь, куда поступает также сигнал, формируемый излучением дополнительной радиоизотопного источника, проходящим через поглощающий металлич. клин и дополнительной приемник. В преобразователе вырабатывается сигнал, который функционально связан с разностью поступающих в него сигналов и управляет реверсивным электродвигателем, перемещающим клин до уравнивания входных сигналов (от основного и дополнительного источников излучения). Равновесное перемещение клина связано индукц. передачей с вторичным прибором. Величина перемещения клина пропорциональна изменению плотности жидкости.

Радиоизотопные ПЛОТНОМЕРЫ позволяют бесконтактно контролировать и регулировать плотность агрессивных, сильновязких, горячих и находящихся под большим давлением жидкостей, сгущенного молока, сахарных сиропов и др. Эти приборы используют также для определения плотности твердых тел и иногда газов.

Вибрац. приборы. Чувствит. элемент такого ПЛОТНОМЕРЫ представляет собой отполированную изнутри металлич. трубку, к-рую помещают непосредственно в потоке анализируемого вещества. Трубка осциллирует в потоке с помощью электронного устройства. Частота собств. колебаний чувствительный элемента определяется плотностью вещества (см. также Вибрационная техника).

Совр. технологические ПЛОТНОМЕРЫ оснащены микропроцессорами и вычислит. блоками (например, для автоматич. корректировки параметров при изменении внешний условий). Благодаря этим усовершенствованиям значительно повысились функциональные возможности и улучшились метрологич. и эксплуатационных характеристики технол. ПЛОТНОМЕРЫ

Литература: Кивилис С. Ш., в кн.: Приборостроение и средства автоматики, т. 2, кн. 2, M., 1964, с. 270-77; Глыбин И. ПЛОТНОМЕРЫ, Автоматические плотномеры, К., 1965; Измерение массы, объема и плотности, M., 1972; Шкатов E. Ф., Технологические измерения и КИП на предприятиях химической промышленности, M., 1986, с. 234-58; Кузьмин С. Т., Липавский В. H., Смирнов ПЛОТНОМЕРЫ Ф., Промышленные приборы и средства автоматизации в нефтеперерабатывающей и нефтехимической промышленности, M., 1987, с. 61-71. А.Ф. Гусаков.

Химическая энциклопедия. Том 3 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(21.02.2017)