химический каталог




ОСАЖДЕНИЕ

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ОСАЖДЕНИЕ, выделение в виде твердого осадка из газа (пара), раствора или расплава одного или несколько компонентов. Для этого создают условия, когда система из исходного устойчивого состояния переходит в неустойчивое и в ней происходит образование твердой фазы (см. Зарождение новой фазы). ОСАЖДЕНИЕ из пара (десублимация) достигается понижением температуры (например, при охлаждении паров иода возникают кристаллы иода) или химический превращаются паров, к которому приводят нагревание, воздействие радиации и т.д. Так, при перегревании паров белого фосфора образуется осадок красного фосфора; при нагревании паров летучих -дикетонатов металлов в присутствии О2 осаждаются пленки твердых оксидов металлов.

ОСАЖДЕНИЕ твердой фазы из растворов можно добиться различные способами: понижением температуры насыщ. раствора, удалением растворителя выпариванием (часто в вакууме), изменением кислотности среды, состава растворителя, например добавлением к полярному растворителю (воде) менее полярного (ацетон или этанол). Последний процесс часто называют высаливанием. Широко применяют для ОСАЖДЕНИЕ различные химический реагенты-осадители, взаимодействующие с выделяемыми элементами с образованием малорастворимых соединений, которые выпадают в осадоколо Например, при добавлении раствора ВаСl2 к раствору, содержащему серу в виде SO2-4, образуется осадок BaSO4. Для выделения осадков из расплавов последние обычно охлаждают.

Работа образования зародышей кристаллов в гомог. системе довольно велика, и формирование твердой фазы облегчается на готовой поверхности твердых частиц (см. Кристаллизация). Поэтому для ускорения ОСАЖДЕНИЕ в пересыщенные пар и раствор или переохлажденный расплав часто вводят затравку - высокодисперсные твердые частицы осаждаемого или др. вещества. Особенно эффективно использование затравок в вязких растворах. Образование осадка может сопровождаться соосаждением - частичным захватом к.-л. компонента раствора.

После ОСАЖДЕНИЕ из водных растворов образующемуся высокодисперсному осадку перед отделением часто дают возможность "созреть", т.е. выдерживают осадок в том же (маточном) растворе, иногда при нагревании. При этом в результате так называемой оствальдова созревания, обусловленного различием в раствори-мости мелких и крупных частиц, агрегации и др. процессов, происходит укрупнение частиц осадка, удаляются соосаж-денные примеси, улучшается фильтруемость. Св-ва образующихся осадков удается изменять в широких пределах благодаря введению в раствор различные добавок (ПАВ и др.), изменению температуры или скорости перемешивания и др. факторам. Так, варьированием условий осаждения BaSO4 из водных растворов удается увеличить удельная поверхность осадка от ~0,1 до ~ 10 м2/г и более, изменить морфологию частиц осадка, модифицировать поверхностные свойства последнего. Образовавшийся осадок, как правило, оседает на дно сосуда под действием силы тяжести. Если осадок мелкодисперсный, для облегчения его отделения от маточного раствора применяют центрифугирование.

Для разделения жидкой и твердой фаз применяют различные способы, в частности фильтрование - пропускание раствора с осадком через пористый материал (фильтровальную бумагу, стеклянный фильтр) иногда под действием вакуума; декантацию-слив жидкой фазы. Выделение твердой фазы из запыленных газов называют пылеулавливанием.

Широкое применение находит электроосаждение-О. в результате электролиза при пропускании через раствор (расплав) электрич. тока. Путем электроосаждения выделяют из растворов многие металлы, в частности Ag, Cu, Ni. Др. тип электрохимический осаждения, иногда называемый цементацией,-выделение менее активного металла на поверхности более активного без пропускания тока (например, Сu из растворов ее солей осаждается на поверхности железа).

Разл. виды ОСАЖДЕНИЕ находят широкое применение в химии при обнаружении химический элементов по характерному осадку (см., в частности, Микрокристаллоскопия)и при количественное определении веществ (см. Гравиметрия), для удаления мешающих определению компонентов и для выделения примесей со-осаждением, при очистке солей перекристаллизацией, для получения пленок, а также в химический промышлености для разделения фаз.

В последнем случае под ОСАЖДЕНИЕ понимают механические отделение взвешенных частиц от жидкости в суспензии под действием силы тяжести. Эти процессы называют также седиментацией, оседанием, отстаиванием, сгущением (если ОСАЖДЕНИЕ проводят с целью получения плотного осадка) или осветлением (если получают чистые жидкости). При сгущении и осветлении часто дополнительно применяют фильтрование.

Необходимым условием ОСАЖДЕНИЕ является существование разности плотностей дисперсной фазы и дисперсионной среды, т.е. седиментац. неустойчивость (для грубодисперс-ных систем). Для высокодисперсных систем разработан критерий седиментации, который определяется главным образом энтропией, а также температурой и др. факторами. Установлено, что энтропия выше при протекании ОСАЖДЕНИЕ в потоке, а не в неподвижной жидкости. Если критерий седиментации меньше критической величины, ОСАЖДЕНИЕ не происходит и устанавливается седиментац. равновесие, при котором дисперсные частицы распределяются по высоте слоя по определенному закону. При ОСАЖДЕНИЕ концентемпературир. суспензий крупные частицы при падении увлекают за собой более мелкие, что ведет к укрупнению частиц осадка (ортокинетическая коагуляция).

Скорость ОСАЖДЕНИЕ зависит от физических свойств дисперсной и дисперсионной фаз, концентрации дисперсной фазы, температуры. Скорость ОСАЖДЕНИЕ отдельной сферич. частицы описывается уравением Стокса: , где d-диаметр частицы, -разность плотностей твердой () и жидкой () фаз, -динамич. вязкость жидкой фазы, -ускорение свободный падения. Уравнение Стокса применимо лишь к строго ламинарному режиму движения частицы, когда число Рейнольдса Re < 1,6, и не учитывает ортокинетич, коагуляцию, поверхностные явления, влияние изменения концентрации твердой фазы, роль стенок сосуда и др. факторы.

ОСАЖДЕНИЕ монодисперсных систем характеризуют гидравлич. крупностью частиц, численно равной экспериментально установленной скорости их оседания. В случае полидисперсных систем пользуются среднеквадратичным радиусом частиц или их средним гидравлич. размером, которые также определяют опытным путем.

При ОСАЖДЕНИЕ под действием силы тяжести в камере различают три зоны с различные скоростями ОСАЖДЕНИЕ: в зоне свободный падения частиц она постоянна, затем в переходной зоне уменьшается и, наконец, в зоне уплотнения резко падает до нуля.

В случае полидисперсных суспензий при невысоких концентрациях осадки образуются в виде слоев-в ниж. слое самые крупные, а затем более мелкие частицы. Это явление используют в процессах отмучивания, т. е. классификации (разделения) твердых дисперсных частиц по их плотности или размеру, для чего осадок несколько раз перемешивают с дисперсионной средой и отстаивают в течение различные промежутков времени.

Вид образующегося осадка определяется физических характеристиками дисперсной системы и условиями ОСАЖДЕНИЕ В случае гру-бодисперсных систем осадок получается плотным. Рыхлые гелеобразные осадки образуются при ОСАЖДЕНИЕ полидисперсных суспензий тонко измельченных лиофильных веществ. "Консолидация" осадков в ряде случаев связана с прекращением броуновского движения частиц дисперсной фазы, что сопровождается образованием пространств. структуры осадка с участием дисперсионной среды и изменением энтропии. При этом большую роль играет форма частиц. Иногда для ускорения ОСАЖДЕНИЕ в суспензию добавляют флокулянты-спец. вещества (обычно высокомол.), вызывающие образование хлопьевидных частиц-флокул.

В промышлености ОСАЖДЕНИЕ осуществляют с помощью отстойников (иногда называют также сгустителями или осветлителями), которые бывают периодического и непрерывного действия. Продолжительность т пребывания суспензии в отстойнике должна быть равна или больше времени осаждения частицы. Если используется отстойник с площадью поперечного сечения F и рабочей высотой h, то рабочий объем отстойника W= Fh, a = h/v: часовая производительность Следовательно, для увеличения производительности отстойника надо увеличить поверхность, на к-рую оседает осадок, для чего и применяют наклонные перегородки (полки). При этом на ОСАЖДЕНИЕ высокодисперсных суспензий может также влиять броуновское движение частиц, в одних случаях ухудшая эффективность разделения, в других-способствуя захвату частиц обеими поверхностями полоколо

В ряде случаев необходимо производить ОСАЖДЕНИЕ двухфазных и многофазных систем. Для оценки эффективности этого процесса можно пользоваться следующей правилом. В случае ОСАЖДЕНИЕ частиц, равномерно распределенных по высоте слоя и не участвующих в броуновском движении и коагуляции, массовая доля дисперсных фаз в осадке не может быть больше произведения среднемассовой скорости седиментации частиц дисперсной фазы на отношение (для периодически действующих отстойников) или на отношение горизонтальной проекции суммарной поверхности осаждения к объему отстойника (для непрерывнодействующих отстойников). Процессы ОСАЖДЕНИЕ различаются в зависимости от конструкции отстойника и характера обрабатываемой жидкости.

По направлению движения потока суспензии отстойники делятся на радиальные, горизонтальные, вертикальные и наклонные, или тонкослойные. В радиальных отстойниках суспензия подается в центр аппарата и движется к периферии. В горизонтальных-она загружается с одного конца аппарата и передвигается вдоль него. В вертикальных-суспензия подается снизу и поднимается вверх, причем скорость восходящего потока должна быть меньше ско рости оседания твердых частиц (иногда для ускорения ОСАЖДЕНИЕ исходную смесь подают под слой сгущающегося осадка). В наклонных-О. осуществляется в пакетах пластин (или труб), наклоненных под углом 45-60°.

Процессы ОСАЖДЕНИЕ осложняются при турбулентном потоке разделяемой суспензии, который часто наблюдается в вертикальных отстойниках, а также в горизонтальных при Re > 500. В этом случае траектории движения частиц искривляются, жидкость перемешивается, что способствует переносу твердых частиц и их транспортированию во взвешенном состоянии на значительной расстояния.

Эффективность отстаивания суспензий существенно повышается при ламинарном режиме течения, который обеспечивается соответствующей скоростью подачи жидкости, так и применением перегородок (горизонтальных, наклонных или вертикальных).

На рис. 1 изображен радиальный отстойник-смолоулови-тель, применяемый на коксохимический заводах для очистки сточных вод, содержащих смолы и масла. Всплывающая на поверхность жидкости легкая фаза (масла) перетекает в сборник 3, откуда откачивается насосом. Плавающие доски 2 служат ограничителями, предотвращающими перетекание легкой фазы из одной части отстойника в другую. Скребки 6 перемещают осадок к отводу 7.


Рис. 1. Отстойник-смолоуловитель: 1 подводящий лоток; 2-плавающая доска: 3-сборник легкой фазы. 4 лоток для отвода очищенной воды; 5, 7 отводы соответственно легких и тяжелых фаз; 6 - скребки; 8 - подача пара; 9 - отвод конденсата; 10 - электромотор; 11-вал скребкового механизма.

На рис. 2 приведена схема наклонного многополочного сгустителя для осветления высококонцентрир. сточных вод обогатит. фабрик цветной металлургии и сгущения продуктов обогащения. Сточные воды, содержащие взвешенных веществ 20-60 г/л, поступают через центральное трубу в зону ОСАЖДЕНИЕ и затем в зону тонкослойного ОСАЖДЕНИЕ Жидкая фаза после отстаивания переливается в периферийный лоток 5, а осадок скребковым механизмом 8 подается к центру отстойника, откуда отводится через трубопровод 6 для дальнейшей обработки.



Рис. 2. Многополочный сгуститель: 1-бортик; 2-вал скребкового механизма; 3 - трубопровод для подачи сточной воды; 4 - многополочный блок; 5-лоток для отвода осветленной воды; 6 - трубопровод для отвода сгущенного концентрата; 7-рассекатель потока воды; 8 скребковый механизм; 9-коническое днище; 10-подкос для поддержки многополочного блока.

На рис. 3 приведена схема горизонтального отстойника для выделения оседающих и всплывающих примесей из производств. сточных вод заводов синтетич. каучука. Он представляет собой прямоугольный железобетонный проточный резервуар. Сточные воды через камеру 1 распределяются по четырем секциям. Механизм для сгребания осадка представляет собой транспортер 4 со скребками, работающий по типу эскалатора. В конце отстойной части расположен лоток для приема осветленной воды. Добавляемый для очистки воды "активный" ил с бактериями (уничтожающими органическое примеси) задерживается в спец. отстойниках-иловых колодцах 2. По сравнению с круглыми, прямоугольные горизонтальные отстойники занимают меньшую площадь и быстрее удаляют осадоколо



Рис. 3. Горизонтальный отстойник: 1 распределительная камера; 2 иловые колодцы; 3 электропривод; 4 скребковые транспортеры; 5 отводящие трубопроводы.

В химический промышлености отстойники применяют для отделения значительной части жидкой фазы суспензий перед фильтрацией, для промывки осадков методом декантации, улавливания из сточных вод ценных или вредных продуктов, для разделения по крупности зерен твердой фазы суспензий при мокром помоле и замкнутом цикле, для отделения примесей или крупных зерен при отмучивании дисперсных систем.

Литература: Кутепов A.M., Соколов Н.В., "Теоретические основы химической технологии", 1981, т. 15, № 1, с. 135 37; Очистка производственных сточных вод, М., 1985; Соколов Н. В.. "Химическая промышленость", 1987. № 4. с. 39-40 (231 -232). В. И. Соколов, С. С. Бердоносов.


Химическая энциклопедия. Том 3 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
курсы по ексль
Установка автосигнализации Pandora DXL 5000 new
Рекомендуем компьютерную фирму КНС, промокод на скидку "Галактика" - Ноутбук HP ProBook 450 G2 - офис-салон на Дубровке.
плёнка от камер гибдд отзывы

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(03.12.2016)