химический каталог




ОЖЕ-СПЕКТРОСКОПИЯ

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ОЖЕ-СПЕКТРОСКОПИЯ электронная (ЭОС), раздел спектроскопии, изучающий энергетич. спектры оже-электро-нов, которые возникают при облучении исследуемого вещества электронным пучком. ЭОС широко используется для определения элементного состава газов и поверхности твердых тел, для изучения электронного строения и химический состояния атомов в пробе.

Оже-эффект заключается в следующем. Под действием ионизирующего излучения на одном из внутр. электронных уровней (например, К-уровне) атома образуется вакансия, на к-рую переходит электрон с более высокого уровня (например, L3-подуровня). Возникший при переходе электрона избыток энергии может привести к испусканию рентгеновского фотона (излучат. переход) или к выбрасыванию еще одного электрона, например с подуровня L1 (безызлучат. переход). Этот электрон называют оже-электроном, а его кинетическая энергия Е определяется уравением: Е = Ек — EL1 - EL3 , где Ек, EL1 и EL3-энергии связи электронов на уровнях К, L1, и L3 соответственно (с учетом влияния ионизации атома). Рассмотренный оже-переход обозначается KL1L3. Существуют и др. переходы, например типа LMM, MNN, KLM. Оже-эффект наблюдается у всех элементов периодической системы, начиная с Li, причем его вероятность для легких элементов достигает 0,99 и убывает с увеличением порядкового номера. В твердом теле наряду с переходами между внутр. уровнями атома наблюдаются переходы (типа LMV, LVV и т.д.) с участием электронов валентной зоны.

Спектры оже-электронов регистрируют с помощью оже-спектрометров, которые состоят из источника ионизирующего излучения, камеры для размещения исследуемых образцов, энергоанализатора и детектора электронов. В качестве ионизирующего излучения используют электронные пучки с энергией от 3 до 10 кэВ, а в приборах с пространств. разрешением менее 0,1 мкм-с энергией выше 10 кэВ. Для измерения кинетическая энергии электронов применяют дисперсионные электростатич. энергоанализаторы (с цилиндрич. или полусферич. электродами), которые обеспечивают высокое энергетич. разрешение (DE/E)•100 ~ 0,05%. Для детектирования электронов служат электронные умножители (в частности, каналтроны), имеющие высокую эффективность счета низкоэнергетич. электронов при малом уровне фона. Оже-спектрометры дают возможность получать энергетич. спектры в виде зависимостей N(E)-E и [dN(E)/dE]-E (рис. 1), где N(E)- выход (или интенсивность тока) оже-электронов, равный числу оже-электронов, испускаемых исследуемым объектом в единицу времени.



По спектрам оже-электронов можно проводить качеств. и количественное элементный анализ пробы. Для этого пользуются спектрами в координатах [dN(E)/dE]-E, которые обеспечивают более высокую чувствительность и точность анализа. Элемент, присутствующий в пробе, идентифицируют по значению кинетическая энергии Е оже-электронов, поскольку эта величина зависит только от энергии связи электронов на электронных уровнях, и, следовательно, определяется природой атомов. Кроме того, форма оже-пиков в спектре чувствительна к химический состоянию атомов, что наиболее четко проявляется в случае переходов с участием электронов валентной зоны (рис. 2).


Концентрацию элемента в пробе можно оценить по интенсивности его пика в оже-спектре. Для этого обычно применяют метод внешний стандарта (эталона) или безэталон ный метод. В первом случае интенсивность Ii пика i-го элемента в оже-спектре пробы сравнивают с интенсивностью Ii, соответствующего пика в оже-спектре стандартного образца или с интенсивностью пика оже-спектра чистого серебра. Концентрацию Ci i-ro элемента рассчитывают по формулам: или соответственно, где ai,Ag-фактор элементной чувствительности; ai,Ag =. В безэталон ном методе расчет ведут по формуле:

,где Ij-интенсивность пика j-го элемента в оже-спектре пробы (ji). Погрешность анализа рассмотренными методами составляет 10-15%, а чувствительность при определении различные элементов варьирует от 0,01 до 1 ат. %.

Толщина анализируемого слоя поверхности твердого тела определяется глубиной выхода оже-электронов, которая зависит от их энергии и, например, для разных металлов составляет 0,5-2,0 нм. В связи с малой глубиной выхода оже-электронов, загрязнение исследуемой поверхности адсорбир. атомами вносит существ. погрешность в результаты анализа. Поэтому в спектрометрах создают глубокий вакуум (10-6-10-8 Па). Кроме того, оже-спектрометры снабжают ионными пушками (источниками ионов инертных газов), которые используют для очистки исследуемой поверхности и проведения послойного анализа. Оже-спектрометры для анализа газов имеют вакуумную систему, которая обеспечивает одновременно относительно высокое давление (1-10 Па) исследуемого газа в камере образцов и низкое давление (~10-6Па) в измерит. камере.

Оже-эффект открыл П. Оже в 1923; для аналит. целей впервые его использовал Дж. Ландер в 1953.

Литература: Карлсон Т., Фотоэлектронная и оже-спектроскопия, пер. с англ., Л., 1981; Электронная и ионная спектроскопия твердых тел, пер. с англ., под ред. В. И. Раховского, М., 1981. B.C. Сергеев.

Химическая энциклопедия. Том 3 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
металлический штакетник в воронеже купить
анализ кала на углеводы у грудничков где сделать
курсы по наращиванию ногтей в москве
мебель из дерева на дачу

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(05.12.2016)