химический каталог




МНОГОФОТОННЫЕ ПРОЦЕССЫ

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

МНОГОФОТОННЫЕ ПРОЦЕССЫ, фотофизических и фотохимический процессы, происходящие в результате поглощения атомом или молекулой двух и более (до несколько десятков) фотонов. Вероятность МНОГОФОТОННЫЕ ПРОЦЕССЫп. пренебрежимо мала при интенсивности света обычных источников, но при использовании лазерного излучения становится сравнимой с вероятностью обычного (однофотонного) поглощения. При МНОГОФОТОННЫЕ ПРОЦЕССЫ п. атом или молекула возбуждается из основные состояния в высоколежащие квантовые состояния дискретного или непрерывного спектра, в результате чего возможны фотоионизация, фотодиссоциация, фотоизомеризация и т. п. превращения.

М.п. классифицируют по типу возбуждения. Атом (молекула) может резонансно поглотить одновременно п фотонов, если их суммарная энергия равна разности энергий начального (E0) и конечного (Eк)состояний (рис. 1,a). Вероятность такого поглощения пропорциональна интенсивности света в n-й степени. Процесс легко реализуется при облучении лазерными импульсами для п = 2 (см. Двух-квантовые реакции), так как требует интенсивностей ~ 10б-109 Вт/см2. Для трехквантовых процессов (n = 3) требуются более высокие интенсивности света (~ 108-1011 Вт/см2) и т. д. В столь интенсивном поле атом или молекула из конечного состояния дискретного спектра обычно быстро переходит в ионизац. непрерывный спектр (континуум); соответствующий (п + 1)-фотонный процесс наблюдается по возникновению в системе заряженных частиц (электронов или ионов). В случае молекул часто происходит их фрагментация и наблюдается масс-спектр молекулярных и фраг-ментных ионов и радикалов.

Атом (молекула) может резонансно поглотить п фотонов с гораздо большей вероятностью, поднимаясь по "лестнице" последоват. квантовых уровней (рис. 1,б). Т. называют многоступенчатое резонансное возбуждение молекул возможно в многочастотном лазерном излучении, если частоты лазеров настроены точно на частоты последоват. квантовых переходов. Т. к. времена жизни промежуточные квантовых состояний конечны (обычно от 10-6 до 10-11 с), то лазерные импульсы могут воздействовать на атом (молекулу) поочередно, если длительность импульсов и интервал времени между ними меньше времени жизни соответствующего состояния. Если все лазерные импульсы воздействуют одновременно, наряду с многоступенчатым резонансным возбуждением происходит МНОГОФОТОННЫЕ ПРОЦЕССЫп., при котором атом (молекула) поглощает одновременно несколько фотонов и, не задерживаясь на промежуточные уровнях, достигает конечного состояния. Различие между этими процессами проявляется в том, что многоступенчатое возбуждение гораздо более чувствительно к точности резонанса по частоте с промежуточные уровнем по сравнению с МНОГОФОТОННЫЕ ПРОЦЕССЫп.

Поскольку многоступенчатое возбуждение является комбинацией однофотонных квантовых переходов, оно требует гораздо меньших интенсивностей света, чем МНОГОФОТОННЫЕ ПРОЦЕССЫп., происходящий без участия промежуточные резонансных уровней, и возможно при умеренных интенсивностях лазерного излучения (~ 10-105 Вт/см2). Для электронных переходов многоступенчатое возбуждение требует применения несколько лазеров с перестраиваемой частотой. Колебат. переходы многоатомных молекул реализовать гораздо легче, т. к. колебательное уровни расположены почти на одинаковом расстоянии друг от друга по энергии (эквидистантны), а небольшие различия, обусловленные гармоничностью колебаний, может быть компенсированы вращательное структурой колебательное полосы поглощения и ее уширением. В последнем случае многоатомная молекула (ВСl3, SF6, UF6 и др.) в поле монохроматич. лазерного ИК импульса с интенсивностью 106-108 Вт/см2, частота которого настроена в резонанс с колебательное полосой поглощения, может поглотить несколько десятков ИК фотонов и достигнуть границы диссоциации (многофотонная ИК фотодиссоциация).

Между этими двумя крайними случаями (отсутствие промежуточные резонансных уровней и, наоборот, точный резонанс с ними по частоте) существует плавный переход, когда частота излучения находится вблизи точного резонанса с промежуточные уровнем (рис. 1,в). Если расстройка от точного резонанса невелика, но больше ширины промежуточные уровня и ширины спектральной полосы лазерного импульса, происходит не многоступенчатое, а многофотонное возбуждение, но с гораздо более высокой вероятностью, чем при отсутствии точного резонанса. Этот случай реализуется, например, при возбуждении ниж. колебательное уровней многоатомных молекул в одночастотном лазерном ИК излучении.


Рис. 1. Многофотонное возбуждение высоколежащего энергетич. уровня Ek атома или молекулы из основного состояния Е0: а - одночастотным полем с частотой w при отсутствии промежуточные резонансных уровней (I-потенциал ионизации); б-многочастотным полем, частоты которого w1, w2, w3, находятся в точном резонансе с промежуточные квантовыми переходами из-за наличия уровней E1 и Е2; в - одночастотным полем с частотой w, удовлетворяющей двум условиям: двухбайтового резонанса (Е2 — Е0 =) с рас стройкой относительно промежуточные уровня E1 (пунктиром изображено положение точного резонанса) и точного резонанса на следующей переходе (Ek - Е2 =).

Многофотонная фотодиссоциация молекулы в основном электронном состоянии под действием мощного импульса резонансного лазерного ИК излучения характерна для всех многоатомных молекул, обладающих большим числом колебательное степеней свободы. Благодаря исследованиям многофотонного возбуждения под воздействием интенсивного лазерного ИК излучения стала доступной информация о таких свойствах многоатомных молекул в высоковозбужденных колебательное состояниях, как внутри- и межмодовый ангармо-низм и стохастизация колебательное энергии из-за взаимодействие колебаний, энергетич. граница образования квазиконтинуума колебательное состояний, внутри- и межмол. релаксация возбуждения (рис. 2).

М.п., индуцируемые лазерным излучением в атомах и молекулах, имеют ряд важных применений. Резонансная лазерная ионизация атомов позволяет резонансно превращать атом данного элемента (или даже изотоп, при наличии изотопич. сдвига для спектральных квантовых переходов) в ион. Образованные ионы можно, во-первых, детектировать со 100%-ной вероятностью. На этом основана резонансная фотоионизац. лазерная спектроскопия, обладающая наиболее чувствительностью среди методов оптический спектроскопии. В случае молекул возможно одновременное измерение всего масс-спектра образующихся фотоионов, что лежит в основе лазерной масс-спектрометрии. Во-вторых, образованные ионы можно собирать в коллекторах, что служит основой фотоионизац. метода изотопов разделения. Резонансное колебательное ИК возбуждение многоатомных молекул в газовой фазе приводит к их изотонически-селективной фото-диссоциации. На этом основан практически важный метод разделения изотопов легких элементов. Многофотонная ИК фотодиссоциация молекул обеспечивает избират. фотодиссоциацию молекул определенного сорта в смеси, что позволяет осуществлять направленный радикальный химический синтез, трудно осуществляемый в термически равновесных условиях [например, (CF3)3CI].


Рис. 2. Многофотонные процессы возбуждения и диссо циации многоатомной молекулы интенсивным лазерным ИК возбуждением, частота которого настроена в резонанс с колебательное полосой поглощения молекулы. Внизу-дискретные колебательно-вращательное уровни резонансных с полем колеба ний; Ekk-энергетич. граница относительно широкой полосы поглощения, постепенно сдвигающаяся в длинноволновую область из-за ангармонизма колебаний; выше энергии диссоциации D0-континуум состояний перевозбужденной молекулы, подвергающейся мономолекулярному распаду.


Многофотонное электронное возбуждение высоколежащих состояний молекул видимым или УФ излучением позволяет исследовать молекулы в области энергий, соответствующей вакуумному УФ, и, в частности, позволяет открывать новые каналы фотохимический реакций из высоковозбужденных синглетных и триплетных состояний. Для молекул в растворе особенно эффективно многофотонное возбуждение с помощью мощных ультракоротких лазерных импульсов длительности 10-11-10-13 с, которая меньше времени жизни промежуточные электронных состояний. Осуществлены МНОГОФОТОННЫЕ ПРОЦЕССЫ п. резонансного возбуждения NH3, CF3I, UF6 и др. совместным действием ИК и УФ лазерного излучения, при которых ИК излучение обеспечивает резонансное возбуждение колебаний, а УФ излучение - электронное возбуждение молекулы. Такой МНОГОФОТОННЫЙ ПРОЦЕСС лежит в основе еще одного универсального метода лазерного разделения изотопов (в частности, урана), т. к. в ИК спектре проявляется отчетливый изотопич. сдвиг для изотопа любого элемента.

Химическая энциклопедия. Том 3 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
курсы холодильщиков в москве
сковорода для оладей купить в самаре
обувь для футзала купить в москве
312304

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(21.01.2017)