химический каталог




МЕМБРАННЫЙ КАТАЛИЗ

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

МЕМБРАННЫЙ КАТАЛИЗ, основан на избират. переносе через катализатор, как через мембрану, одного из веществ, участвующих в реакции. Мембраной (мембранным катализатором) может служить сам катализатор или к.-л. материал с нанесенным на него каталитически активным веществом.

В МЕМБРАННЫЙ КАТАЛИЗк. используют монолитные мембранные катализаторы, состоящие из металла или его сплава и не имеющие сквозных пор, а также пористые и композиционные катализаторы. Монолитные мембранные катализаторы (ММК) обычно представляют собой металлич. фольгу или тонкостенную трубку. Для реакций с участием Н2 ММК служат Pd и его сплавы, с участием O2-Ag. При этом водород или кислород, пропускаемые с одной стороны ММК, проникают через катализатор в атомарной форме, активной для присоединения к молекулам, адсорбированным на противоположной поверхности катализатора. В результате этого увеличивается общая скорость реакций, возрастает селективность катализатора в реакциях образования продуктов неполного гидрирования или окисления. Например, на ММК из Pd-сплава селективно происходит гидрирование циклопентадиена в циклопентен (выход 98%), а на катализаторах из Ag-окисление спиртов в альдегиды. Высокая селективность реакции обусловлена также тем, что степень заполнения поверхности катализатора субстратом не зависит от степени заполнения ее газом, поступающим через катализатор. При дегидрировании и дегидроциклизации удаление из зоны реакции образующегося Н2, благодаря его диффузии через мембрану, подавляет обратные и побочные процессы. Так, на ММК из сплава Pd (15%) и Rh (85%) 1,2-циклогександиол дегидриру-ется в пирокатехин с выходом 95% без образования, в отличие от реакции на обычном катализаторе, побочного продукта - фенола.

На ММК возможен также МЕМБРАННЫЙ КАТАЛИЗк. с переносом водорода и азота в виде атомов через мембрану из Fe; на противоположной поверхности они соединяются в молекулы NH3, концентрация которых намного превосходит равновесную для реакции молекулярных Н2 и N2 в тех же условиях.

П о р и с т ы е мембранные катализаторы (ПМК) обычно представляют собой пористые пластины или трубки, у которых поверхностный слой или весь объем каталитически активен. В отличие от монолитных катализаторов, они не обеспечивают подведения атомарного реагента в зону реакции, но позволяют подавать большие кол-ва газообразного реагента или более равномерно распределять его в жидком. Так, ПМК используют при гидрировании хлопкового масла, ожижении угольной пасты и др. Положит. особенности монолитных и пористых катализаторов сочетаются при создании композиционных мембранных катализаторов (КМК). Они обычно состоят из пористого, механически прочного листа каталитически неактивного вещества и тонкой, но сплошной пленки активного вещества. Для формирования последней может потребоваться промежуточные непористый слой, и тогда катализатор становится трехслойным, как, например, металлокерамич. лист, покрытый слоем термостойкого и газопроницаемого полимера с нанесенным на него слоем Pd или его сплава (толщиной до 10 мкм). КМК содержат гораздо меньше металла на единицу поверхности, чем монолитные, более устойчивы, проницаемы для Н2 при более низких температурах, что позволяет гидрировать термически нестойкие вещества.

Преимущество МЕМБРАННЫЙ КАТАЛИЗк. перед обычным обусловлено также избират. переносом энергии, необходимой для реакции. Если реакция на одной из поверхностей катализатора сопровождается уменьшением энергии Гиббса системы, то на др. поверхности становится возможной реакция с возрастанием энергии Гиббса. Кроме того, перенос тепла, которое выделяется при экзотермодинамически присоединении Н2, протекающем на одной поверхности катализатора, облегчает проведение на др. его стороне сопряженной эндотермодинамически реакции дегидрирования без сложных теплообменных устройств. Так, сопряжение дегидрирования нафтенов или олефинов с гидродеалкилирова-нием гомологов бензола на ММК повышает скорости обеих реакций и выходы целевых продуктов по сравнению с теми, которые наблюдаются при раздельном их осуществлении. При дегидрировании изопропанола, сопряженном с гидрирова-нием циклопентадиена на ММК из сплава Pd-Ru, на др. сторону мембраны переносится в 2,5 раза больше Н2, чем при проведении отдельной реакции дегидрирования.

М.к. дает возможность перейти к непрерывным, малостадийным процессам при производстве химический реактивов, душистых веществ, лек. препаратов и др. продуктов высокой чистоты. При этом устраняются потери драгоценных металлов из катализаторов, уменьшается число технол. операций и количество отходов, отпадает необходимость в реакторах высокого давления. Для гидрирования вместо дорогого электролитич. водорода может быть использованы газы химический и нефтеперерабатывающей промышлености, богатые водородом.

По механизму МЕМБРАННЫЙ КАТАЛИЗк. происходят важнейшие процессы метаболизма на ферментах, закрепленных в биомембранах с избират. проницаемостью.

Химическая энциклопедия. Том 3 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
вафельница для газовой плиты купить
мусат для ножей купить цена
наружная реклама виды фото
холодильника sharp sj-641 nbe открывается дверь холодильника

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(24.05.2017)