химический каталог




МАСШТАБНЫЙ ПЕРЕХОД

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

МАСШТАБНЫЙ ПЕРЕХОД (масштабирование), разработка аппаратов с размерами и мощностью, превышающими размеры и мощность ранее изученных прототипов. Переход от лабораторная аппаратов к опытным, от опытных к промышленным сопровождается изменением показателей химико-технол. процессов (степеней превращаются сырья, состава конечных продуктов, удельная производительности и энергозатрат и т.д.). Возрастание масштабов аппаратов обычно связано с ухудшением показателей. Основные задача МАСШТАБНЫЙ ПЕРЕХОД п. - достижение в пром. условиях таких показателей процессов, которые достигнуты на аппаратах меньших масштабов. Направления поиска техн. решений, обеспечивающих выполнение данной задачи, определяются результатами моделирования.

При увеличении масштабов и мощности реакционных, тепло- и массообменных и иных аппаратов, как правило, возрастает неравномерность распределения материальных потоков, интенсифицируется или ухудшается перемешивание, изменяются локальные и средние по объему межфазные поверхности контакта, появляются застойные зоны, каналы и т.д. Причины - увеличение масштаба турбулентности или возникающих циркуляц. контуров, изменение параметров конструкц. элементов аппаратов (распределит. и теплообменные устройства, насадки и др.) вследствие различные условий их изготовления и эксплуатации. Например, в колонных барботажных аппаратах эффективные коэффициент перемешивания возрастают по формуле: Dэ ~ da1,3 - 1,5. В колонных массообменных аппаратах переход от меньшего диаметра da1 к большему da2 сопровождается увеличением высоты единицы переноса Hп (см. Массообмен): Hп2 — Hп1 ~ ln da2/da1. В аппаратах с мешалками из-за ограничений на допустимую мощность привода с ростом da интенсивность перемешивания может снижаться. Результатом изменений структуры потоков и являются отмеченные выше изменения показателей процессов.

При решении задачи МАСШТАБНЫЙ ПЕРЕХОД п. методами мат. моделирования прогнозируют ожидаемые изменения показателей и устанавливают условия проведения процессов (структура потоков, температурные и концентрац. поля) при требуемых показателях. Техн. решения по реализации этих условий находят экспериментально. наиболее распространены следующей приемы осуществления МАСШТАБНЫЙ ПЕРЕХОД п.

1. Отыскивают требуемые конструктивные решения путем технол. испытаний пром. аппаратов натурных размеров. Это самый дорогостоящий прием, практически неприемлемый для аппаратов большой единичной мощности.

2. Создают пром. аппарат из элементов, изученных в натурных масштабах (простейший пример - реактор или теплообменник в виде параллельных трубок). Данный прием надежен, но не универсален. Так, габариты аппаратов может быть недопустимо велики, а задача распределения потока между элементами требует самостоят. решения.

3. Изучают "холодные" модели аппаратов с потоками инертных сред (вода, воздух, твердые частицы). Опытным путем определяют характеристики структуры потоков: кривые отклика на концентрац. возмущения по меченому веществу -трассёру, в том числе локальные; поля концентраций трассёра при стационарном его источнике (см. Трассёра метод), профили скоростей, различные "индексы неоднородностей", отражающие отклонения локальных скоростей, плотностей, концентраций от осредненных значений этих величин. В ходе исследований находят конструкции распределит. и перемешивающих устройств, насадок, провальных и непровальных решеток и т.д., которые позволяют сохранить характеристики структуры потока при увеличении масштаба аппарата. Результаты мат. моделирования и эксперимент показывают, что при близкой структуре потоков в аппаратах разных масштабов близки и показатели технол. процессов. Данный прием называют гидродинамич. моделированием.

4. Изменяют параметры технол. процесса так, чтобы он протекал в более благоприятном направлении при условиях переноса массы и теплоты в крупномасштабном аппарате. Например, в химический реакторах уменьшают скорость путем снижения температуры с одновременным увеличением высоты или длины реакционное зоны. При снижении удельная производительности аппаратов это обеспечивает необходимый конечный состав перерабатываемого потока.

5. Разрабатывают технол. схему, позволяющую компенсировать изменения показателей процесса, например, путем рецикла непрореагировавших продуктов.


При решении задачи МАСШТАБНЫЙ ПЕРЕХОДп. для конкретных процессов можно комбинировать указанные приемы. Пример: при увеличении масштаба реактора кипящего слоя для хлорирования углеводородов обнаружено значительной ухудшение селективности процесса. Мат. моделированием и натурным экспериментом выявлено, что причиной этого оказался рост размеров полых неоднородностей - пузырей (см. Псевдоожижение). Показано, что для МАСШТАБНЫЙ ПЕРЕХОД п. можно применять реактор, в котором кипящий слой разделен на две зоны: в нижней размещены теплосъемные поверхности и существенно (по сравнению с лабораторная прототипом) понижена температура; в верхней установлены провальные решетки, разрушающие пузыри, и достигнуто постепенное повышение температуры до допустимых значений. Конструкции решеток, необходимые для расчетов коэффициент переноса массы и теплоты, найдены при исследовании "холодного" аппарата. Длит. испытания подтвердили правильность принятого техн. решения. Из приведенного примера следует, что при МАСШТАБНЫЙ ПЕРЕХОД п. конструкции аппаратов и технол. режимы в случае необходимости могут значительно изменяться.

Химическая энциклопедия. Том 2 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
купить компьютер в москве цена
световые панели магнетик цена
концерт григорий лепс ты чего такой серьезный купить билет
где купить домашнюю стереосистему

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(18.10.2017)