химический каталог




КРИСТАЛЛИЗАЦИЯ

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

КРИСТАЛЛИЗАЦИЯ, переход вещества из газообразного (парообразного), жидкого или твердого аморфного состояния в кристаллическое, а также из одного кристаллич. состояния в другое (рекристаллизация, или вторичная КРИСТАЛЛИЗАЦИЯ); фазовый переход первого рода. КРИСТАЛЛИЗАЦИЯ из жидкой или газовой фазы-экзотермодинамически процесс, при котором выделяется теплота фазового перехода, или теплота КРИСТАЛЛИЗАЦИЯ; при этом изменение энтропии в большинстве случаев составляет [в Дж/(моль.К)]: для простых веществ 5-12, для неорганическое соединение 20 - 30, для органическое соединение 40-60. Рекристаллизация может протекать с выделением либо поглощением теплоты. В промышлености и лабораторная практике КРИСТАЛЛИЗАЦИЯ используют для получения продуктов с заданными составом, содержанием примесей, размерами, формой и дефектностью кристаллов (см. Дефекты, Кристаллическая структура. Кристаллы), а также для фракционного разделения смесей (см. Кристаллизационные методы разделения смесей), выращивания монокристаллов и др.
Физико-химические основы процесса. Условия, при которых возможна КРИСТАЛЛИЗАЦИЯ, определяются видом диаграммы состояния. Чтобы КРИСТАЛЛИЗАЦИЯ протекала с конечной скоростью, исходную фазу необходимо переохладить (перегреть), пересытить кристаллизующимся веществом или внести во внешний поле, снижающее растворимость кристаллизующейся фазы. В переохлажденной (перегретой) либо пересыщенной фазе происходит зарождение новой фазы - образуются центры КРИСТАЛЛИЗАЦИЯ, которые превращаются в кристаллы и растут, как правило, изменяя форму, содержание примесей и дефектность. Центры КРИСТАЛЛИЗАЦИЯ возникают гомогенно в объеме начальной фазы и гетерогенно на поверхностях посторонних твердых частиц (первичное зародышеобразование), а также вблизи поверхности ранее сформировавшихся кристаллов новой фазы (вторичное зародышеобразование). Общее число центров КРИСТАЛЛИЗАЦИЯ, возникших в единице объема раствора или расплава в 1 с, или суммарную интенсивность их первичного и вторичного образования, находят по формуле:

где a -кинетическая коэффициент первичного зародышеобразования, который рассматривают в рамках кинетическая теории образования новой фазы; R - газовая постоянная; T - температура КРИСТАЛЛИЗАЦИЯ; у-удельная поверхностная свободный энергия кристаллов; Vт - молярный объем новой фазы; Dm = D HS и S = (Т0-7)/Т0 для расплавов, am =RT1n(S + 1) и S = (c-c0)/c0 для растворов; D H-энтальпия КРИСТАЛЛИЗАЦИЯ; с - концентрация кристаллизующегося вещества; Т0 и c0 - соответственно температура плавления вещества и концентрация насыщ. раствора; Eакт - энергия активации перехода молекул из среды в центры КРИСТАЛЛИЗАЦИЯ; Iат - интенсивность вторичного зародышеобразования в объеме начальной фазы. Для измерения a, Eaкт и Iвт находят зависимость интенсивности образования центров КРИСТАЛЛИЗАЦИЯ от температуры, пересыщения и концентрации посторонних твердых частиц. Величина Iи проходит через один или несколько максимумов (рис. 1) с возрастанием переохлаждения (пересыщения) и увеличивается при механические воздействиях (перемешивание,

Рис. I Зависимость скорости зародышеобразования от переохлаждения расплава InSb: I расплав массой 16 г перегревался в кварцевом тигле на 15 К выше температуры плавления в течение 9 мин и затем охлаждался со скоростью 1 град/мин; 2 то же, на 55 К в течение 20 с.

ультразвук) или под влиянием ионизирующего излучения. При росте кристаллов сначала кристаллизующееся вещество адсорбируется на поверхности сформировавшегося кристаллика, а затем встраивается в его кристаллич. решетку: при сильном переохлаждении равновероятно на любом участке поверхности (нормальный рост), при слабом - слоями тангенциально на ступенях, образованных винтовыми дислокациями или двухмерными зародышами (послойный рост). Если переохлаждение ниже некоторого значения, называют пределом морфологич. устойчивости, нормально растущий кристалл повторяет форму (обычно округлую) теплового либо концентрац. поля вокруг него, а послойно растущий кристалл имеет форму многогранника. При превышении указанного предела растут древовидные кристаллы (дендриты). Количественно рост кристаллов характеризуют линейной скоростью, равной скорости перемещения их поверхности в нормальном к ней направлении. В промышлености используют эффективную линейную скорость роста (увеличение в 1 с радиуса шара, объем которого равен объему кристалла): Iэфф= b Snехр(Eр/RT), где b - кинетическая коэффициент роста (10-5-10-14 м/с), n-параметр роста (обычно 1-3), Ер - энергия активации роста (10-150 кДж/моль). Параметры b , n и Eр находят, измеряя Iэфф при разных температурах и пересыщениях раствора или переохлаждениях расплава. С увеличением переохлаждения Iэфф проходит через максимум аналогично I m . Скорость роста может лимитироваться массо- и теплообменом кристаллов со средой (соответственно внешнедиффузионный и теплообменный режимы роста), скоростью химический взаимодействие кристаллизующегося компонента с другими компонентами среды (внешнекинетическая режим) или процессами на поверхности кристаллов (адсорбционно-кинетическая режим). Во внешнекинетическая режиме Iэфф возрастает с повышением концентраций реагентов и катализаторов, во внешнедиффузионном и теплообменном режимах - с увеличением интенсивности перемешивания, в адсорбционно-кинетическая режиме - с возрастанием поверхностной дефектности кристаллов и уменьшением концентрации ПАВ. При высоких скоростях роста кристаллы приобретают значительной число неравновесных дефектов (вакансий, дислокаций и др.). При превышении предела морфологич. устойчивости в объем кристаллов попадают трехмерные включения среды, замурованные между ветвями дендритов (окклюзия). Состав кристаллов из-за окклюзии приближается к составу среды тем больше, чем выше Iэфф. При своем росте кристаллы захватывают любую присутствующую в среде примесь, причем концентрация захваченной примеси зависит от скорости роста. Если КРИСТАЛЛИЗАЦИЯ происходит в растворе и кристаллы после завершения роста продолжают контактировать со средой, то неравновесно захваченная примесь выбрасывается из кристаллов в среду, а их структура совершенствуется (структурная перекристаллизация). Одновременно в перемешиваемой среде при столкновениях кристаллов друг с другом и со стенками кристаллизатора возникают дополнительной структурные дефекты. Поэтому в системе постепенно устанавливается стационарная дефектность кристаллов, которая зависит от интенсивности перемешивания. В наиболее распространенном случае образования при КРИСТАЛЛИЗАЦИЯ множества кристаллов (массовая КРИСТАЛЛИЗАЦИЯ) выделяющаяся фаза полидисперсна, что обусловлено неодновременностью зарождения кристаллов и флуктуациями их роста. Мелкие кристаллы более растворимы, чем крупные, поэтому при убывающем пересыщении наступает момент, когда среда, оставаясь пересыщенной относительно последних, становитcя

Рис. 2. Функция распределения кристаллов по размерам (обычным r и наиболее вероятным rA)при изотермической (298 К) периодической кристаллизации из водного раствора в кристаллизаторе с мешалкой (число Re=104): 1 BaSO4, исходное пересышение S0=500. rA=7.6 мкм; 2 - K2SO4, высаливание метанолом (1.1)rA=1 мкм; t время процесса.

насыщенной относительно мелких кристаллов. С этого момента начинаются их растворение и рост крупных кристаллов (освальдoво созревание), в результате чего средний размер кристаллов возрастает, а их число уменьшается. Одновременно в перемешиваемой среде кристаллы раскалываются при соударениях и через некоторое время приобретают стационарную дисперсность, определяемую интенсивностью механические воздействия. Осн. количеств, характеристика массовой КРИСТАЛЛИЗАЦИЯ - функция распределения кристаллов по размеру f(r,t)=dN/dr, где N - число кристаллов, размер которых меньше текущего размера r, в единице объема в момент t. Эта функция часто имеет колоколообразный вид (рис. 2); восходящая ее ветвь чувствительна в основные к зародышеобразованию, росту, раскалыванию и растворению (при созревании) кристаллов, нисходящая к росту и образованию их агрегатов. Если среднее квадратичное отклонение размера кристаллов от среднего не превышает половины, последнего, упомянутая функция называют узкой, если превышает - широкой. Изменение функции f(r,t) при КРИСТАЛЛИЗАЦИЯ описывается уравением:

где a - коэффициент флуктуации скорости роста кристаллов; Dк и vк - соответственно коэффициент диффузии и скорость перемещения кристаллов в среде; Iar и Iр - соответственно интенсивность образования кристаллов данного размера за счет слипания более мелких частиц и раскалывания кристаллов. Система уравений материального и теплового балансов, уравения (2), а также уравения, связывающие размеры и скорость роста кристаллов с их формой, дефектностью и содержанием примесей, - основа моделирования и расчета массовой КРИСТАЛЛИЗАЦИЯ и выбора оптим. условий ее реализации. Массовую КРИСТАЛЛИЗАЦИЯ осуществляют периодически или непрерывно. При периодической КРИСТАЛЛИЗАЦИЯ охлаждают расплав или насыщ. раствор (пар), испаряют растворитель, добавляют высаливающие агенты (см. ниже) или смешивают порции реагентов, образующих продукционные кристаллы. При непрерывной КРИСТАЛЛИЗАЦИЯ в кристаллизатор вводят потоки расплава, пересыщенного раствора либо реагентов и непрерывно отводят кристаллич. продукт. При пeриодич. процессе скорость КРИСТАЛЛИЗАЦИЯ, определяемая по формуле:
,
где r и V - соответственно плотность твердой фазы и объем системы, сначала медленно растет (период индукции), затем резко увеличивается в результате одновременного возрастания r и f и, пройдя через максимум, уменьшается (рис. 3) вследствие снижения Iэфф. В периоды индукции и увеличения скорости КРИСТАЛЛИЗАЦИЯ в системе преобладают зарождение и рост кристаллов, в период уменьшения скорости - их рост, агрегация и раскалывание и далее -освальдово созревание и структурная перекристаллизация. Период индукции сокращается под влиянием факторов, которые ускоряют зародышеобразование и рост кристаллов. Так, при охлаждении расплавов этот период с повышением интенсивности охлаждения сначала уменьшается, а затем

Рис. 3. Типичное изменение скорости периодической кристаллизации: t - время процесса; t - длительность периода индукции; A - момент появления новой фазы; В - начало стадии структурной перeкристаллизации и освальдова созревания.

возрастает из-за экстремальной зависимости скоростей зарождения и роста кристаллов от переохлаждения; если темп охлаждения достаточно велик, расплав твердеет, оставаясь аморфным (см. Стеклообразное состояние). Для сокращения периода индукции в систему добавляют кристаллы продукта (затравку), которые растут, что приводит к увеличению скорости КРИСТАЛЛИЗАЦИЯ В результате выделения при росте кристаллов теплоты КРИСТАЛЛИЗАЦИЯ снижается переохлаждение и замедляется зародышеобразование. При малых переохлаждениях (пересыщениях) зародыши вообще не возникают, и затравка, введенная в систему в виде единичных кристаллов, может вырасти в монокристалл, а в виде порошка-в так называемой монодисперсный продукт с узкой функцией f(r, t). При непрерывной КРИСТАЛЛИЗАЦИЯ функция f(r,t) в сопоставимых условиях перемешивания шире, чем при периодической КРИСТАЛЛИЗАЦИЯ, что объясняется разбросом времен пребывания кристаллов в кристаллизаторах непрерывного действия. Чтобы сузить эту функцию, режим КРИСТАЛЛИЗАЦИЯ приближают к режиму идеального вытеснения, чтобы расширить - к режиму идеального перемешивания (см. Структура потоков). При малом пересыщении системы непрерывная КРИСТАЛЛИЗАЦИЯ устойчива к флуктуациям внешний условий; при высоком пересыщении его значение и размер кристаллов колеблются в ходе КРИСТАЛЛИЗАЦИЯ В химический и смежных отраслях промышлености, а также в лабораториях преимущественно применяют КРИСТАЛЛИЗАЦИЯ из расплавов и растворов, реже - КРИСТАЛЛИЗАЦИЯ из паровой и твердой фаз. КРИСТАЛЛИЗАЦИЯ из расплавов используют главным образом для отверждения расплавленных веществ и, кроме того, для их фракционного разделения и выращивания монокристаллов. Отверждение веществ в виде отливок (блоков) осуществляют в спец. формах. В малотоннажных производствах (например, реактивов) обычно применяют отдельные формы определенных размеров или конфигурации, в которых расплав охлаждается путем естеств. теплообмена с окружающей средой; в крупнотоннажных производствах (нафталина и др.) КРИСТАЛЛИЗАЦИЯ проводят в секционированных, трубчатых, конвейерных и иных кристаллизаторах со встроенными формами, принудительно охлаждаемыми водой, жидким NH3, хладонами и т.п. Для получения продуктов в виде тонких пластинок или чешуек используют непрерывно действующие ленточные, вальцевые и дисковые кристаллизаторы, где отверждение происходит значительно интенсивнее, чем в формах. В ленточном кристаллизаторе (рис. 4) исходный расплав

Рис. 4. Ленточный кристаллизатор: 1 лента; 2 приводные барабаны; 3 питающий бункер; 4 охлаждающее устройство; 5 отверждснный продукт.

тонким слоем подается на движущуюся металлич. ленту, на которой он охлаждается до полного затвердевания. В вальцевом аппарате (рис. 5) продукт кристаллизуется на наружной поверхности охлаждаемого изнутри вращающегося полого барабана (вальца), частично погруженного в ванну с расплавом; кристаллы снимаются с барабана неподвижным ножом. В дисковых аппаратах отверждение продуктов происходит на поверхности охлаждаемых изнутри вращающихся дисков.

Рис. 5. Вальцевый кристаллизатор: 1 барабан; 2 ванна; 3 нож; 4 труба для подачи хладагента; 5 форсунка; 6 расплав; 7 отвержденный продукт.

При приготовлении гранулир. продуктов расплав диспергируют непосредственно в поток хладагента газообразного, в основные воздуха (производство аммиачной селитры, карбамида и др.), или жидкого, например воды либо масла (производство пластмасс, серы и т. п.) в полых башнях или аппаратах с псевдоожнжeнным слоем, где кристаллизуются мелкие капли расплава (см. Гранулирование). КРИСТАЛЛИЗАЦИЯ из растворов используют преимущественно для выделения ценных компонентов из растворов, а также их концентрированна (см. Вымораживание) и очистки веществ от примесей. В-ва, растворимость которых сильно зависит от температуры (например, KNO3 в воде), кристаллизуют охлаждением горячих растворов, при этом исходное количество растворителя, который содержится в маточной жидкости, в системе не изменяется (изогидрическая КРИСТАЛЛИЗАЦИЯ). В малотоннажных производствах применяют емкостные кристаллизаторы периодической действия, снабженные охлаждаемыми рубашками. В таких аппаратах раствор охлаждают при непрерывном перемешивании по определенной программе. Для предотвращения интенсивной инкрустации поверхностей охлаждения разность температур между раствором и хладагентом должна быть не более 8-10°С. В крупнотоннажных производствах используют, как правило, скребковые, шнековые, дисковые, барабанные и роторные кристаллизаторы непрерывного действия. Скребковые аппараты обычно состоят из нескольких последовательно соединенных трубчатых секций, в каждой из которых имеется вал со скребками и которые снабжены общей или индивидуальными охлаждающими рубашками. При вращении вала скребки очищают внутр. поверхность охлаждаемых труб от осевших на них кристаллов и способствуют транспортированию образовавшейся сгущенной суспензии из секции в секцию. В шнековых кристаллизаторах раствор перемешивают и перемещают с помощью сплошных или ленточных шнеков. Дисковые кристаллизаторы снабжены неподвижными либо вращающимися дисками. В первом случае (рис. 6) по оси аппарата расположен приводной вал со скребками для очистки поверхностей дисков от осаждающихся кристаллов; исходный раствор подается в кристаллизатор сверху, а образующаяся суспензия последовательно проходит в пространстве между охлаждаемыми дисками и выгружается через ниж. штуцер. Во втором случае вал с дисками размещен внутри корыта или горизонтального цилиндрич. сосуда; кристаллы снимаются с поверхности дисков неподвижными скребками.

Осн. элемент барабанного кристаллизатора - полый барабан с опорными бандажами, установленный под углом 15° к горизонтальной оси и вращающийся с частотой 5-20 мин-1. Раствор, охлаждаемый водяной рубашкой или воздухом (который нагнетают вентилятором через внутр. полость барабана), поступает с одного его конца, а суспензия отводится с другого. Вязкие растворы (например, жирных кислот) часто охлаждают в роторных кристаллизаторах - цилиндрич. аппаратах, внутри которых с большой скоростью вращается ротор с ножами. Последние под действием центробежной силы прижимаются к внутр. поверхности кристаллизатора, очищая ее от осевших кристаллов. Раствор обычно подастся в аппарат под избыточным давлением. Для увеличения времени пребывания в кристаллизаторе раствора и большего его переохлаждения последовательно соединяют несколько аппаратов. При использовании скребковых, шнековых, роторных и иногда дисковых кристаллизаторов часто образуются мелкие кристаллы (0,1-0,15 мм), что приводит к увеличению слеживаемости и адсорбционного загрязнения продукта, а также ухудшает его фильтруемость. Поэтому для укрупнения кристаллов продукта после упомянутых аппаратов устанавливают так называемой кристаллорастворители, в которых концентрир. суспензия выдерживается при медленном охлаждении, что приводит к росту кристаллов до 2-3 мм. Для получения крупнокристаллич. однородных продуктов часто применяют кристаллизаторы с псевдоожиженным слоем (рис. 7). Исходный раствор вместе с циркулирующим осветленным маточником подается насосом в теплообменник, где в результате охлаждения раствор пересыщается и поступает по циркуляц. трубе в ниж. часть кристаллорастворителя, в котором кристаллы поддерживаются во взвешенном состоянии восходящим потоком раствора. КРИСТАЛЛИЗАЦИЯ происходит в основные на готовых центрах кристаллизации, при этом крупные кристаллы осаждаются на дно аппарата, откуда удаляются в виде сгущенной суспензии. Осветленный маточник разделяется на две части: одна отводится из верх, части аппарата, другая подается на рециркуляцию.

Рис. 7. Кристаллизатор с псевдоожиженмым слоем: I насос: 2 теплообмeнник: 3 циркуляционная труба; 4 кристаллорастворитель.

В ряде cлучаев КРИСТАЛЛИЗАЦИЯ растворов осуществляют непосредственным смешением их с жидкими, газообразными и испаряющимися хладагентами в смесительных, барботажных, распылительных и др. аппаратах. Если растворимость вещества мало изменяется с изменением температуры (например, NaCl в воде), КРИСТАЛЛИЗАЦИЯ проводят частичным или практически полным испарением растворитeля путем выпаривания насыщ. раствора при почти постоянной температуре (изотермическая КРИСТАЛЛИЗАЦИЯ). По конструкции выпарные кристаллизаторы в значительной степени напоминают выпарные аппараты (см. Выпаривание) и могут иметь внутр. или выносную (рис. 8) греющие камеры. В таком кристаллизаторе исходный и циркулирующий растворы, проходя через камеру, нагреваются до температуры кипения. Образовавшаяся парожидкостная смесь поступает в сепаратор, где пар отделяется от раствора. Кристаллы, осаждающиеся в сепараторе, вместе с маточной жидкостью направляются в спец. аппарат, в котором отделяются от нее и выводятся в виде конц. суспензии;

Рис. 8. Выпарной кристаллита гор: 1 выносная греющая камера: 2 сепаратор: 3 циркуляционная труба; 4 отделитель кристаллов.
Рис. 9. Вакуум-кристаллизатор: 1 - сепаратор: 2 - циркуляционная труба: 3 барометрическая труба; 4 гидрозатвор

осветленный маточник возвращается в камеру. Для предотвращения инкрустации (обрастания) поверхностей нагрева раствор должен циркулировать в кристаллизаторе с достаточно большой скоростью (до 3 м/с), что часто достигается применением осевых насосов. При одновременном охлаждении и выпаривании растворителя КРИСТАЛЛИЗАЦИЯ осуществляют в вакуум-кристаллизаторах периодической или непрерывного действия, с принудительной либо естественной циркуляцией раствора. Раствор охлаждается вследствие адиабатич. испарения части растворителя при создании в таком аппарате определенного разрежения. Кол-во испаренного растворителя обычно составляет 8-10% от общей массы раствора. В кристаллизаторе с естеств. циркуляцией (рис. 9) исходный раствор подается в ниж. часть циркуляц. трубы и вместе с циркулирующей суспензией поднимается вверх, где в результате понижения давления вскипает. Образовавшиеся пары проходят через сепаратор и поступают в барометрич. конденсатор. Пересыщенный раствор и выделившиеся кристаллы движутся вниз по барометрич. трубе, откуда кристаллы вместе с частью маточной жидкости выводятся в гидрозатвор. Для поддержания разрежения используют вакуум-насосы или пароструйные инжекторы. В крупнотоннажных производствах широко распространены многокорпусные вакуум-кристаллизац. установки с числом корпусов 4-24, в которых глубина разрежения постепенно возрастает от первого корпуса к последнему. Вакуум-кристаллизаторы более производительны и экономичны, чем выпарные кристаллизаторы. КРИСТАЛЛИЗАЦИЯ некоторых веществ можно осуществить высаливанием. При выделении неорганическое соединение используют органическое вещества (например, Na2SO4 кристаллизуют, добавляя к его водному раствору метанол, этанол либо NH3) или содержащие одинаковый ион с выделяемым соединение (например, FeSO4 кристаллизуют из травильных растворов добавкой конц. H2SO4); при выделении органическое соединений - воду, водные растворы неорганическое солей и т. п. Введение в раствор в качестве высаливателей органическое веществ обычно удорожает процесс из-за сложности их регенерации. КРИСТАЛЛИЗАЦИЯ из паровой фазы позволяет кристаллизовать вещества, обладающие высоким парциальным давлением паров над твердой фазой и способные непосредственно переходить из газообразного состояния в кристаллическое (например, иод, фталевый ангидрид). Такую КРИСТАЛЛИЗАЦИЯ используют для выделения ценных компонентов из парогазовых смесей, получения аэрозолей, нанесения тонких кристаллич. слоев на поверхность различные тел (например, в производстве полупроводниковых материалов) и т.д. КРИСТАЛЛИЗАЦИЯ аморфной твердой фазы и рекристаллизацию осуществляют, как правило, при температурах, близких к температурам плавления кристаллизуемых веществ. При этом в результате термодиффузионных процессов изменяется первичная кристаллич. структура вещества либо происходят зарождение и рост кристаллов из аморфной фазы. Такую КРИСТАЛЛИЗАЦИЯ применяют для получения веществ и материалов с заданными кристаллич. структурой либо степенью кристалличности (термопластичные полимеры, стекло и др.).

Химическая энциклопедия. Том 2 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
курсы подготовка презентаций
рыбалка в подмосковье на новой риге
бокал вина
аренда машины с водителем в москве escalade

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(03.12.2016)