химический каталог




КРИСТАЛЛИЗАЦИOННЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ СМЕСЕЙ

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

КРИСТАЛЛИЗАЦИOННЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ СМЕСЕЙ, основаны на различии составов жидкой (паровой) и твердой фаз, образующихся при частичной кристаллизации раствора, расплава, газовой фазы. Эти методы служат для разделения бинарных либо многокомпонентных смесей на фракции, обогащенные тем или иным компонентом, а иногда и на практически чистые компоненты. По сравнению с другими методами разделения смесей (например, ректификацией) КРИСТАЛЛИЗАЦИOННЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ СМЕСЕЙ м. обладают существ, преимуществами: низкими рабочими температурами, малыми энергетич. затратами, более высокой (во многие случаях) эффективностью. Это позволяет разделять смеси тсрмолабильных и близкокипящих (в том числе изомеров) компонентов, азеотропные смеси. Методы разделения смесей широко применяют в промышлености для очистки веществ, концентрирования жидких пищевая продуктов (например, соков), обeссоливания и очистки воды, при комплексной переработке сырья (см. Безотходные производства) и т.п. Теоретически возможная степень разделения при кристаллизации определяется видом диаграммы состояния в системе твердое тело - жидкость (газ). Равновесие типичных бинарных смесей, образующих твердые растворы (например, система бензол-тиофен), изображают на этой диаграмме в координатах температура - состав (рис. 1). При охлаждении исходной смеси с концентрацией х„ и температурой tн (точка N) до температуры tф, при которой осуществляется фракционирование, равновесные концентрации компонентов в твердой (кристаллич. продукт) и жидкой (маточный раствор) фазах будут соответственно xк и хм, tд и tс - температуры соответственно начала (температура ликвидуса) и конца (температура солидуса) кристаллизации. В этом случае равновесный коэффициент разделения (отношение концентраций компонентов в равновесных фазах) находится по уравению:

a0=[xк(1-xм)]/[xм(1-xк)]. (1)

На практике, однако, равновесие обычно не достигается, так как на степень разделения оказывают влияние скорость кристаллизации, интенсивность перемешивания раствора или расплава, величина захвата маточной жидкости кристаллами, концентрация смеси и др.

Рис. 1. Диаграмма температура состав для бинарных смесей, образующих твердые растворы.
Рис. 2. Диаграмма температура - состав для эвтектич. смесей.

Поэтому концентрация основные компонента в образующихся кристаллах х»к всегда (при a 0>1) меньше равновесного значения хк, и реальный, или эффективный, коэффициент разделения составляет:

aэ=[x»к(1-xм)]/[xм(1-x»к)]. (2)

Если содержание основные компонента значительно превышает концентрации остальных компонентов (в таких случаях они являются примесями), процесс разделения называют очисткой, и уравение (1) упрощается: a 0км. При a 0>1 примесь концентрируется в кристаллах, при a 0<1 - в маточной жидкости. Отношение концентраций примеси в кристаллич. продукте и маточной жидкости называют коэффициент распределения. Большинство веществ образует между собой так называемой эвтектич. смеси, компоненты которых в твердом состоянии практически взаимно нерастворимы (например, смесь нафталин - фенантрен). При кристаллизации такой смеси (рис. 2) в виде кристаллов должен выделяться практически чистый компонент А (хк : 1). В реальных условиях кристаллы, полученные после отделения от маточного раствора, имеют концентрацию ниже равновесной (x»к<1), однако основные компонент может быть выделен в достаточно чистом виде. Поскольку составы твердой и жидкой фаз в эвтектич. точке Э (tэ - эвтектич. температура) равны, разделить смесь состава хэ на чистые компоненты обычной кристаллизацией не удается. Для этого используют кристаллизацию в присутствии вспомогат. веществ (см. ниже) или сочетают КРИСТАЛЛИЗАЦИOННЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ СМЕСЕЙ м. с иными методами разделения смесей.
Фракционная кристаллизация. Различают следующей виды фракционной кристаллизации: массовую, на охлаждаемых поверхностях, направленную, зонную плавку.
Массовая кристаллизация. Метод состоит в одновременном получении большого кол-ва кристаллов во всем объеме аппарата. В промышлености реализовано несколько вариантов массовой кристаллизации, к-рую осуществляют в периодически или непрерывно действующих аппаратах: емкостных, снабженных наружными охлаждающими рубашками либо внутр. змеевиками и часто перемешивающими устройствами; трубчатых, скребковых, дисковых, шнековых и др. Из-за отсутствия методики расчета параметр a э при массовой кристаллизации находят экспериментально.
Кристаллизация с теплопередачей через стенку. В случае расплавов процесс проводят их охлаждением. При кристаллизации растворов выбор режима процесса определяется главным образом характером зависимости растворимости веществ от температуры. Если растворимость вещества мало изменяется с изменением температуры (например, NaCl в воде), кристаллизацию осуществляют частичным или практически полным выпариванием насыщ. раствора при постоянной температуре (изотермодинамически кристаллизация). В-ва, растворимость которых сильно зависит от температуры (например, KNO3 в воде), кристаллизуют охлаждением горячих растворов, при этом исходное количество растворителя, который содержится в маточной жидкости, в системе не изменяется (изогидрич. кристаллизация). Образовавшиеся кристаллы в зависимости от их свойств, формы и условий проведения процесса захватывают различные количество маточного раствора. Содержание его в твердой фазе в виде включений в порах, трещинах и полостях существенно зависит от способа разделения кристаллов и маточной жидкости. Так, при отделении кристаллов на барабанном вакуум-фильтре концентрация в них маточного раствора составляет 10-30%, на фильтрующей центрифуге - 3-10%. Осн. достоинства процесса: высокая производительность, отсутствие контакта разделяемой смеси и хладагента, простота аппаратурного оформления; недостатки: сравнительно невысокие коэффициент теплопередачи, инкрустация поверхностей охлаждения, большой захват маточной жидкости кристаллами, необходимость установки дополнительной оборудования для разделения твердой и жидкой фаз, недостаточно высокий выход кристаллич. продукта. Примеры применения: получение хлоридов К и Na из сильвинита, разделение изомеров ксилола.
Контактная кристаллизация. Процесс осуществляют при непосредственном контакте раствора или расплава с различные хладагентами. В качестве последних используют охлажденные жидкости (обычно вода либо водные растворы минер, солей), не смешивающиеся и не взаимодействие с разделяемой смесью, а также сжиженные газы (например, бутан), которые при смешении с ней испаряются. Осн. достоинства процесса: интенсификация теплообмена, более высокая скорость в отличие от кристаллизации с теплопередачей через стенку, высокий выход кристаллич. продукта, простота аппаратурного оформления; недостатки: необходимость отделения хладагента от маточного раствора, возможность загрязнения целевого продукта. Примеры применения: очистка сырого бензола, разделение смесей нафталина с бензолом, толуолом или b -метилнафталином, опреснение морской воды.
Кристаллизация на охлаждаемых поверхностях. Особенность метода заключается в том, что температура разделяемой смеси постоянно немного превышает температуру начала кристаллизации. Поэтому зарождение и рост кристаллов происходят не во всем объеме аппарата, как при массовой кристаллизации, а только на его охлаждаемых поверхностях. Различают кристаллизацию на неподвижных и подвижных поверхностях и пленочную. Кристаллизация на неподвижных поверхностях. Процесс проводят в аппаратах периодической действия, где охлаждающими элементами обычно служат гладкие или ребристые трубы либо змеевики. Исходную смесь подают в аппарат и весьма долго выдерживают в нем, пока на охлаждаемых поверхностях не образуется довольно большой слой кристаллов. Затем маточную жидкость сливают, а кристаллы выводят из аппарата. Осн. достоинства: отсутствие стадии отделения кристаллич. фазы от маточного раствора (это преимущество отличает и др. варианты данного процесса от массовой кристаллизации), простота аппаратурного оформления; недостатки: большая продолжительность процесса, значительной захват маточной жидкости кристаллами. Примеры применения: разделение изомеров нитрохлорбен-зола, нафталина и бензойной кислоты. Кристаллизация на подвижных поверхностях. Процесс осуществляют в аппаратах, снабженных охлаждаемыми вращающимися барабанами. Горячая исходная смесь поступает в ванну кристаллизатора, в к-рую погружен барабан. Образующийся на его поверхности кристаллич. слой срезается спец. ножом. Осн. достоинства процесса: высокие интенсивность теплообмена и производительность, возможность реализации непрерывного варианта; недостаток - невозможность в ряде случаев достижения высокой степени фракционирования (так как вся маточная жидкость, захватываемая барабаном, переходит в кристаллич. фазу). Эффективность разделения можно повысить внешний обогревом и отжимом посредством спец. валиков поднимающегося на барабане слоя кристаллов. Примеры применения: разделение смесей b -метилнафталина с a -метилнафталином, нафталина с дифенилом. Пленочная кристаллизация. Процесс проводят в вертикальном кожухотрубчатом теплообменнике, снабженном спец. оросит, устройством. С его помощью исходная смесь равномерно распределяется по внутр. поверхности всех труб и стекает по их стенкам в виде тонкой пленки. В межтрубное пространство кристаллизатора подается охлаждающая жидкость. При охлаждении начинается частичная кристаллизация смеси, и внутр. поверхность труб покрывается ровным слоем кристаллов. По достижении заданной толщины слоя подача разделяемой смеси прекращается, в межтрубное пространство поступает греющий агент (например, вода или водяной пар), происходит выплавление кристаллич. фазы. В случае бинарных смесей в оптим. условиях (при плоском фронте кристаллизации) параметр a э можно рассчитать по уравению (при xи<<1): a э= a0 /[ a0 +(1- a 0)ехр(- v d D/D)], (З) где v - линейная скорость кристаллизации, d D - толщина диффузионного пограничного слоя, D - коэффициент диффузии примеси в жидкой фазе. Осн. достоинства процесса: возможность достижения a э, близких к a 0, высокая производительность, возможность полной автоматизации; недостатки: чувствительность к равномерности орошения по всем трубам, значительной металлоемкость и относит. сложность технол. оборудования. Примеры применения: разделение и очистка веществ в производствах капролактама, фенола, нитро- и хлорароматические соединений, концентрирование водных растворов вымораживанием и др.
Направленная кристаллизация. Процесс обычно осуществляют в горизонтальных или вертикальных (рис. 3) контейнерах, выполненных из термостойкого стекла, кварца, керамики, фторопласта либо графита. Контейнеры, в которые загружены образцы очищаемого вещества, медленно движутся из зоны нагревания в зону охлаждения, на границе которых происходит кристаллизация. Фронт кристаллизации при интенсивном перемешивании жидкой фазы постепенно перемещается от одного конца расплавленного образца к другому вследствие принудительного (обычно с помощью механические привода) движения контейнера. При этом примеси, содержащиеся в веществе, перераспределяются по длине кристаллизующегося образца. Если фронт кристаллизации близок к плоскому, значение a э можно рассчитать по уравению (2). Если параметр a э не зависит от концентрации примеси и в ходе процесса остается постоянным, изменение состава по длине образца определяется выражением: xв=xи a э(1-g) a э-1, (4) где g-доля закристаллизовавшегося образца. По окончании кристаллизации часть образца, обогащенную примесями, отделяют, а остальное количество переплавляют. С целью увеличения степени очистки процесс иногда многократно повторяют. Осн. достоинства: обеспечение глубокой очистки веществ, возможность очистки как высокоплавких, так и низкоплавких соединений; недостатки: значительной потери вещества в случае повторения кристаллизации из-за необходимости каждый раз отделять загрязненную часть образца, большая продолжительность процесса, низкая производительность, высокая стоимость разделения. К направленной кристаллизации прибегают, как правило, для получения небольших кол-в веществ высокой чистоты в случае невозможности использования др. КРИСТАЛЛИЗАЦИOННЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ СМЕСЕЙм. (в частности, зонной плавки), например при очистке металлов (Tl, Sb) и органическое соединений, а также для выращивания монокристаллов (GaAs, InP, LiF, стильбен).

Рис. 3. Установка для направленной кристаллизации: 1 - контейнер; 2 - мешалка; 3, 4 - секции соответственно нагревания и охлаждения.

Зонная плавка (зонная перекристаллизация). Процесс проводят путем медленного перемещения вдоль твердого удлиненного образца (слитка) узкой расплавленной зоны, создаваемой спец. нагревателями (рис. 4). При этом в отличие от направленной кристаллизации образуются две подвижные межфазные границы: на одной происходит плавление, на другой - кристаллизация. В результате после одного прохода расплавленной зоны примесь в образце

Рис. 4. Схема зонной плавки: 1 - контейнер; 2 - исходный образец; 3 - расплавленная зона; 4 - кристаллич. фаза после очистки; 5 - нагреватель; 6 - 7 - соответственно границы плавления и кристаллизации.

перераспределяется, причем наблюдаются три участка. При a э<1 концентрация примеси на первом, среднем и третьем участках соответственно снижается, постоянна и повышается (на длине образца, равной ширине расплавленной зоны); при a э>1 наиболее концентрация примеси создается в начале образца, наименьшая - в конце его. Для достижения высокой степени очистки обычно производят несколько проходов расплавленной зоны. При очень большом числе проходов п обеспечивается предельное распределение примеси по длине образца, выражаемое экспоненциальным законом: xn= : (z)=Aexp(Bz), (5) где хn= : - концентрация примеси в сечении с координатой z по длине образца, А и B - постоянные, зависящие от xи, a э, длины образца и ширины расплавленной зоны. В отличие от направленной кристаллизации повторные проходы расплавленной зоны можно осуществлять без удаления загрязненной части образца, т. к. каждый раз расплавляется лишь его узкая зона. По достижении необходимого распределения концентрации примеси вдоль образца последний извлекают из контейнера, сильно загрязненную часть его удаляют, а остальное количество расплавляют для гомогенизации состава. Осн. достоинство - высокая эффективность; недостатки: низкая производительность, большая продолжительность, высокая стоимость. Примеры применения: получение особо чистых веществ с содержанием примесей 10-7 — 10-9 % (металлы - Gе, Bi, Те, полупроводники - GaP, InAs), лабораторная очистка различные соединение (бензойная кислота, нафталин), выращивание монокристаллов (Si, BeO, сапфир, корунд), концентрирование микропримесей в химический анализе, исследование диаграмм состояния. наиболее целесообразно зонную плавку использовать для глубокой очистки веществ, предварительно очищенных др. КРИСТАЛЛИЗАЦИOННЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ СМЕСЕЙм. до концентраций примесей приблизительно 1%.
Кристаллизация в присутствии вспомогательных веществ. Разделение смесей методами фракционной кристаллизации иногда невозможно или затруднено. В таких случаях фракционирование проводят, добавляя в раствор или расплав спец. вспомогат. вещества. Различают аддуктивную и экстрактивную кристаллизацию. Аддуктивная кристаллизация. Метод основан на способности одного или несколько компонентов разделяемой смеси образовывать с к.-л. дополнительно вводимым веществом мол. комплексы либо клатраты (канальные, клеточные). Получаемая при этом кристаллич. фаза распадается при нагревании на индивидуальные компоненты. Склонность ряда веществ к образованию мол. соединение при кристаллизации используют в основные для фракционирования некоторых смесей органическое веществ. Так, для выделения n-ксилола из его смеси с изомерами в расплав вводят ССl4 или SbBr3, образующие с n-ксилолом мол. соединение, но не взаимодействующие с м- и o-ксилолами. В качестве клатратообразующих веществ применяют карбамид, гидрохинон, металлоорганическое соединение и др. Например, способность карбамида образовывать комплексы с углеводородами и их производными широко используют для выделения парафинов из нефтепродуктов (см. Депарафнизация). Смеси неорганическое соединение часто разделяют с помощью гидрохинона, который дает устойчивые клатраты, например, с SO2, О2, HCl, H2S, а также с благородными газами (Аr, Кr, Хе). Для фракционирования смесей ароматические соединение, в частности для извлечения бензола, применяют комплекс Ni(CN)2.NH3.C6H6. Некоторые газы (пропан, хладоны) и низкокипящис жидкости образуют кристаллич. комплексы с водой (см. Газовые гидраты) при температурах, значительно превышающих температуру ее замерзания. Это используют, например, для опреснения морской воды. Аддуктивная кристаллизация обычно проводится в емкостных аппаратах для массовой кристаллизации и включает следующей стадии: смешение разделяемой смеси со вспомогат. веществом, образование кристаллич. осадка, отделение его от маточника, промывку осадка и его разложение, отделение продукта от вспомогат. вещества. Недостатки: высокие удельная расход (10-20 кг на 1 кг кристаллич. продукта) и стоимость вспомогат. веществ. большое число стадий. Экстрактивная кристаллизация. Сущность метода заключается в изменении фазового равновесия в разделяемой системе при введении в нее вспомогат. веществ. Процесс осуществляют в обычной кристаллизац. аппаратуре в двух вариантах: по одному из них дополнительной компонентом служит растворитель, образующий с исходной смесью гомог. раствор, по другому - экстрагент, растворяющий примеси, но не смешивающийся с основные компонентом. В первом случае принципиальная технол. схема включает следующей стадии: разделение, например, бинарной смеси массовой кристаллизацией на один чистый компонент и первый маточник, смешение последнего с вспомогат. веществом, кристаллизацию тройной смеси с выделением др. чистого компонента, регенерацию растворителя из второго маточника, смешение остатка, содержащего некоторые кол-ва обоих компонентов, с исходной смесью. Во втором случае в результате смешения разделяемой системы с экстрагентом образуется гетерог. смесь и возникают два слоя: один содержит очищенный продукт, другой - преимущественно нежелательные примеси и экстрагент. При этом разделение исходной смеси осуществляется за счет суммарного эффекта экстракции и кристаллизации. Процесс имеет такие же недостатки, как и аддуктивная кристаллизация. Экстрактивную кристаллизацию применяют для фракционирования смесей, образующих эвтектики (например, смесь м- я n-ксилолов, растворитель - н-гептан) и мол. комплексы (например, смесь м- и n-крезолов, растворитель - уксусная кислота). Довольно часто экстрактивную кристаллизацию сочетают с массовой и направленной кристаллизацией, а также с зонной плавкой, что значительно повышает эффективность очистки веществ с помощью указанных методов. Так, экстрактивную зонную перекристаллизацию с растворителями (бензол, нафталин) используют для очистки насыщ. углеводородов и полистирола, экстрактивные направленную кристаллизацию а зонную плавку с экстрагентами - для очистки металлов (вспомогат. вещества - легкоплавкие металлы, соли, оксиды) и разнообразных органическое веществ (экстрагенты - те же, что и при экстракции жидкостной, например трибутилфосфат, нафтеновые кислоты, алкилфенолы, первичные и вторичные амины).
Фракционные плавление и сублимация. Фракционное плавление. Деление методов разделения смесей на фракционные кристаллизацию и плавление условно, так как эти методы обычно взаимосвязаны. Рассматриваемый процесс проводят путем частичного медленного выплавления предварительно закристаллизованного расплава в аппаратах с внутр. теплообменными устройствами, камерах "потения", трубчатых (в т.ч. пленочных) и др. При этом разделение может происходить в одном или несколько аппаратах. В первом случае исходная смесь сначала охлаждается до полного или частичного затвердевания. Далее образовавшаяся кристаллич. фаза медленно нагревается, причем часть ее (преимущественно низкоплавкий компонент) переходит в жидкое состояние, отделяется от кристаллов и свободно стекает Оставшаяся часть твердой фазы (обогащенная высокоплавким компонентом) при быстром нагреве полностью расплавляется и отводится из аппарата в виде конечного продукта. Во втором случае расплав предварительно полностью отверждается на барабанном или ленточном кристаллизаторе, затем кристаллич. масса медленно нагревается в спец. аппарате, частично расплавляясь. Полученную суспензию обычно выдерживают в течение определенного времени при температуре выше tс и далее подвергают фильтрованию. После отделения жидкости остается кристаллич. продукт, обогащенный высокоплавким компонентом. Осн. достоинство процесса - возможность сочетания преимуществ фракционной кристаллизации и плавления, высокая производительность; недостаток - невозможность эффективного разделения смесей, образующих твердые растворы. Примеры применения: отделение парафина от нефтяных масел, очистка сырого бензола от примесей (в частности, серосодержащих), очистка восков, выделение нафталина из его фракций и др. Фракционная сублимация. Метод состоит в частичном испарении твердой исходной смеси. Сублимация неразрывно связана с кристаллизацией из газовой фазы - десублимацией, при которой зарождение и рост кристаллов происходят во всем объеме аппарата или только на его охлаждаемых поверхностях. Установка для сублимации (рис. 5) состоит из бункера, куда поступает разделяемая смесь, сублиматора и вспомогат. емкостей. Сублиматор - труба с вращающимся шнеком, перемещающим смесь из левой секции аппарата, которая обогревается электрич. током, в правую, снабженную охлаждающим устройством. Т. обр., на пути от места загрузки примерно до середины сублиматора твердая смесь частично испаряется. В правой секции из газовой фазы конденсируется готовый продукт, который срезается шнеком со стенок аппарата и направляется в спец. сборник; оставшаяся после сублимации масса выгружается в емкость для отвала.

Рис. 5. Установка для сублимация: 1 - бункер; 2 - сублиматор с обогреваемой злекрич. током (3) и охлаждаемой (4) секциями; 5, 6 - сборники соответственно готового продукта в отвала.

Осн. достоинство - большая эффективность разделения (как правило, для систем твердое тело - газ она всегда выше, чем для систем твердое тело - жидкость); недостаток - значительно большие по сравнению с фракционными кристаллизацией и плавлением затраты энергии. Примеры применения: очцстка от примесей промежуточные продуктов в производствах красителей (антрахинона, бензантрона, 2 - метилантрахинона и др.), очистка терефталевой и бензойной кислот (фракционная десублимация). По аналогии с противоточной кристаллизацией (см. ниже) перспективно использование противоточной сублимации с непрерывным массообменом между кристаллами и паровой фазой (например, разделение систем Zr—Hf, антрацен - карбазол, очистка АlСl3).
Многократная перекристаллизация Методы однократных кристаллизации и плавления часто не. обеспечивают требуемой степени разделения смесей или достаточного выхода целевого компонента. Для улучшения этих показателей применяют многократную перекристаллизацию растворов или расплавов, что дает возможность получать целевые продукты с содержанием основные вещества 99% и более. Один из вариантов многократной перекристаллизации -дробная кристаллизация, осуществляемая только из растворов. По этому методу исходную смесь разделяют путем массовой кристаллизации на две фракции - кристаллич. фазу и маточную жидкость; каждую из них делят на две новые фракции (соответственно добавлением к кристаллам свежего растворителя с повторной кристаллизацией и выпариванием маточника). Такое дробление продолжают до тех пор, пока не достигают необходимой степени разделения. Условие построения рациональной технол. схемы - требование минимума числа фракций при заданном числе ступеней (кристаллизаторов). Для этого процесс проводят таким образом, чтобы отдельные промежуточные фракции имели одинаковые составы и могли быть объединены. Осн. достоинство процесса - возможность разделения смесей несколько компонентов с близкими физических-химический свойствами (например, смесей Zr и Hf или РЗЭ); недостатки: низкая производительность, большое число стадий.

Рис. 6. Схема многократной перекристаллизации.

Для повышения производительности используют многократную перекристаллизацию с рециркуляцией кристаллов (маточника), осуществляемой в несколько последовательно соединенных аппаратах - ступенях (рис. 6). Исходная эвтектич. смесь И подается в ступень l, где образуются кристаллы K1 последние после отделения от маточника M1 расплавляются и поступают на кристаллизацию в ступень 2, а выделившиеся в ней кристаллы K2 - в ступень 3. Маточники M2 и М3 направляются на вход в предыдущие ступени, а продукт П выводится из ступени 3. Для разделения смесей, образующих твердые растворы, на индивидуальные компоненты применяют многократную перекристаллизацию с противотоком маточной жидкости и твердой фазы и возвратом части готового продукта. Осн. достоинство многократной перекристаллизации - возможность достижения высоких степеней очистки; недостаток - большая продолжительность. Противоточная кристаллизация с непрерывным массообменом. Многократная перекристаллизация с противоточным движением кристаллич. фазы и маточного раствора может быть осуществлена в одном аппарате с непрерывным межфазным массообменом. По принципу действия противоточные кристаллизаторы аналогичны насадочным ректификац. колоннам (см. Носадочные аппараты). Кристаллы, образующиеся при охлаждении в верх, части шнекового кристаллизатора (рис. 7), перемещаются в ниж. часть аппарата, где они плавятся, и расплав поднимается вверх навстречу кристаллам. Исходная смесь с концентрацией хп подается в среднюю часть кристаллизатора, высокоплавкий продукт с концентрацией хп выводится снизу, а низко плавкий с концентрацией хи - сверху. В лабораторная шнековых аппаратах и пустотелых колоннах с транспортом кристаллов под действием силы тяжести, диаметр которых не превышает 30 см, высокие степени разделения достигаются даже в случае смесей, образующих твердые растворы (системы бензол - тиофен и n-дихлорбензол-n-дибромбензол удалось разделить на практически чистые компоненты). С увеличением диаметра колонн эффективность фракционирования снижается вследствие продольного перемешивания, каналообразования и слипания кристаллов.

Рис. 7. Колонный шнековый кристаллизатор: 1 - корпус; 2 - шнек; 3, 4 - секции соответственно нагревания и охлаждения; 5 - привод.

В пром. практике для очистки смесей (например, изомеров дихлорбензола) наиболее распространены комбинир. установки, которые состоят из двух-трех охлаждаемых горизонтальных шнековых кристаллизаторов диаметром до 2 м и вертикаль ной очистной колонны с гравитац. перемещением кристаллов. На таких установках расход энергии не превышает 5-10% от энергетич. затрат на ректификац. установках. Макс. пропускной способностью обладают пульсационные аппараты колонного типа, в которых с помощью спец. устройства интенсифицируется межфазный массообмeн. Осн. достоинства противоточной кристаллизации по сравнению с другими методами: наиболее эффективность разделения, высокая производительность; недостаток-сложность аппаратурного оформления.

Химическая энциклопедия. Том 2 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
Домашний 50 л
все серии fissler
ярославскоешоссе строение2е
контейнерное хранение вещей шереметьевская

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(08.12.2016)