![]() |
|
|
КИБЕРНЕТИКАКИБЕРНЕТИКА в химической технологии (от греческого kybernetike - искусство управления), раздел науки о связях процессов и явлений в химико-технол. системах и управлении ими. Предмет исследования - химический объекты и их совокупности, химический производства, стратегия изучения - системный анализ, научный метод мат. моделирование, средства реализации ЭВМ. КИБЕРНЕТИКА позволяет получать конкретные количеств, результаты, анализировать и синтезировать (разрабатывать) химико-технологические системы (ХТС) с заданными свойствами, прогнозировать их оптим. функционирование (см. Оптимизация) и создавать алгоритмы управления процессами.
ХТС включает: собственно химический процессы, аппарат или группу аппаратов для проведения этих процессов, средства контроля и управления процессами и связи между ними. Совокупность этих элементов и связи между ними образуют структуру ХТС. Функционирование ее может оцениваться совокупностью показателей (количественных, качественных, материальных, энергетических, экономических, экологических и т.д.), каждый из которых существенно зависит от организации данной ХТС, состава входящих в нее процессов, технол. совершенства отдельных стадий и др. Взаимод. системы с окружающей средой в общем случае описывается двумя группами переменных: входными и выходными. Последние определяют показатели работы ХТС и отражают ее реакцию на воздействия окружающей среды, которые проявляются в изменениях входных переменных, характеризующих, например, количество перерабатываемого сырья, его состав, термодинамическое свойства. Любые незапрограммированные изменения входных переменных, вызывающие изменения показателей функционирования системы, рассматриваются как возмущения, чаще всего нежелательные. Компенсация их и поддержание параметров режима работы ХТС в заданных пределах осуществляются целенаправленным изменением особой части входных переменных управляющих воздействий.
Стратегия анализа и построение математических моделей процессов и систем. Для изучения существующих и разрабатываемых ХТС применяют стратегию системного анализа, в соответствии с которой производится декомпозиция (расчленение) исходной сложной системы на ряд подсистем меньшей сложности т наз технол. операторов При этом
каждая из подсистем может рассматриваться как самостоят, система, а окружающая ее среда включает остальные подсистемы. Количеств, связь выходных переменных с входными, возмущающими и управляющими воздействиями представляет собой так называемой функциональный оператор, или мат. модель ХТС, и отображается системой уравений, называют мат. описанием изучаемого объекта. Осн. прием его построения-так называемой блочный принцип, согласно которому после установления набора элементарных процессов каждый из них исследуется отдельно (по блокам) в условиях, максимально приближенных к существующему или предполагаемому режиму эксплуатации объекта моделирования. В результате каждому элементарному технол. оператору ставится в соответствие элементарный функциональный оператор, описывающий его свойства.
Согласно стратегии системного анализа, в КИБЕРНЕТИКА вначале анализируется гидродинамич. часть общего технол. оператора - основа будущей модели. Эта часть оператора характеризует поведение так называемой холодного объекта (например, химический реактора), т.е. объекта, в котором отсутствуют физических-химический превращения. Вначале анализируется структура потоков в объекте и ее влияние на процессы переноса и перемешивания компонентов потока. Изучаемые на данном этапе закономерности, как правило, линейны и описываются линейными дифференц. уравениями. Результаты анализа представляются обычно в виде системы дифференц. уравений с найденными значениями их параметров. Иногда для описания процессов не удается использовать мат. аппарат детерминированных (изменяющихся непрерывно по вполне определенным законам) уравений. В таких случаях применяют статистико-вероятностное (стохастич.) описание в виде некоторых функций распределения свойств процесса (функции распределения частиц веществ по размерам, плотности и др., например при псевдоожижении; функции распределения элементов потока по временам пребывания в аппаратах при диффузии или теплопереносе и т.д.; см. также Трассёра метод). Далее анализируется кинетика химический реакций и фазовых переходов в условиях, близких к существующим условиям эксплуатации объекта, а также скорости массо- и теплопередачи и составляются соответствующие элементарные функциональные операторы. Кинетич. закономерности химический превращений, массообмена и фазовых переходов обычно служат основные источниками нелинейности (реакции порядка, отличного от нуля и единицы, нелинейные равновесные соотношения, экспоненциальная зависимость кинетическая констант от температуры и т. п.) в уравениях мат описания объекта моделирования.
Мат. описание формируется объединением полученных на предшествующих этапах системного анализа функциональных операторов в единую систему уравений. Решение системы уравений мат. описания для заданной совокупности значении входных переменных (постоянных и изменяющихся во времени) и составляет основу мат моделирования, позволяющего исследовать свойства объекта путем численных экспериментов на его мат. модели. Последняя дает возможность прогнозировать поведение объекта при изменениях входных переменных, решать задачи оптим. выбора конструктивных характеристик (проектирование), синтезировать системы управления, обеспечивающие заданные показатели его функционирования. При этом важное значение имеет выбор алгоритма (программы) решения системы уравений мат. описания так называемой алгоритма моделирования. Как правило, мат. описание реальных объектов оказывается настолько сложным, что для реализации мат. моделирования необходимо использовать достаточно мощные средства вычислит. техники. Поэтому разработка эффективных алгоритмов моделирования основа развития систем автоматизированного проектирования и автоматизированного управления для различные химико-технОл. процессов.
Идентификация мат. моделей объектов. Любая мат. модель лишь приближенное подобие объекта моделирования. Поэтому она дает только приближенные оценки показателей его функционирования. В последовательности этапов мат моделирования эти различия выявляются на
этапе установления адекватности (соответствия) модели объекту, или ее идентификации. Результаты проверки адекватности могут оказаться неудовлетворительными, что потребует существенно изменить задачу, начиная с ее постановки. Адекватность модели объекту оценивается лишь при наличии эксперим. данных, полученных на объекте моделирования, с помощью так называемой критерия адекватности; последний оценивает отклонения (рассогласование) опытных и расчетных значений соответствующих переменных объекта и модели. Конкретный вид критерия адекватности зависит от объема, состава и точности имеющихся опытных данных, типа модели, свойств объекта и т.д. Например, для линейных по параметрам моделей широко применяется статистич. критерий Фишера (см. Обработка результатов эксперимента, Планирование эксперимента); для нелинейных моделей чаще используются так называемой квадратичные оценки рассогласования указанных эксперим. (уэксп) и расчетных (yрасч) значений переменных, например, в след, форме:
Химическая энциклопедия. Том 2 >> К списку статей |
[каталог] [статьи] [доска объявлений] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|