химический каталог




КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ, поверхностные явления на границе жидкости с другими средой, связанные с искривлением ее поверхности. Искривление поверхности жидкости на границе с газовой фазой происходит в результате действия поверхностного натяжения жидкости, которое стремится сократить поверхность раздела и придать ограниченному объему жидкости форму шара. Поскольку шар обладает миним. поверхностью при данном объеме, такая форма отвечает минимуму поверхностной энергии жидкости, т.е. ее устойчивому равновесному состоянию. В случае достаточно больших масс жидкости действие поверхностного натяжения компенсируется силой тяжести, поэтому маловязкая жидкость быстро принимает форму сосуда, в который она налита, а ее свободный поверхность представляется практически плоской. В отсутствие силы тяжести или в случае очень малых масс жидкость всегда принимает сферич. форму (капля), кривизна поверхности которой определяет многие свойства вещества. Поэтому КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ я. ярко выражены и играют существ. роль в условиях невесомости, при дроблении жидкости в газовой среде (или распылении газа в жидкости) и образовании систем, состоящих из многие капель или пузырьков (эмульсий, аэрозолей, пен), при зарождении новой фазы капель жидкости при конденсации паров, пузырьков пара при вскипании, зародышей кристаллизации. При контакте жидкости с конденсир. телами (др. жидкостью или твердым телом) искривление поверхности раздела происходит в результате действия межфазного натяжения. В случае смачивания, например, при соприкосновении жидкости с твердой стенкой сосуда, силы притяжения, действующие между молекулами твердого тела и жидкости, заставляют ее подниматься по стенке сосуда, вследствие чего примыкающий к стенке участок поверхности жидкости принимает вогнутую форму. В узких каналах, например, цилиндрич. капиллярах, образуется вогнутый мениск - полностью искривленная поверхность жидкости (рис. 1).

Рис. 1. Капиллярное поднятие на высоту h жидкости, смачивающей стенки капилляра радиуса r; q - краевой угол смачивания.

Капиллярное давление. Т. к. силы поверхностного (межфазного) натяжения направлены по касательной к поверхности жидкости, искривление последней ведет к появлению составляющей, направленной внутрь объема жидкости. В результате возникает капиллярное давление, величина которого D p связана со средним радиусом кривизны поверхности r0 уравением Лапласа:

D p = p1 - p2 = 2 s 12/r0, (1)

где p1 и p2 - давления в жидкости 1 и соседней фазе 2 (газе или жидкости), s 12 - поверхностное (межфазное) натяжение. Если поверхность жидкости вогнута (r0<0), давление в ней оказывается пониженным по сравнению с давлением в соседней фазе p1 < р2 и D p < 0. Для выпуклых поверхностей (r0 > 0) знак D p изменяется на обратный. Отрицат. капиллярное давление, возникающее в случае смачивания жидкостью стенок капилляра, приводит к тому, что жидкость будет всасываться в капилляр до тех пор, пока вес столба жидкости высотой h не уравновесит перепад давления D p. В состоянии равновесия высота капиллярного поднятия определяется формулой Жюрена:

где r1 и r 2 - плотности жидкости 1 и среды 2, g - ускорение силы тяжести, r - радиус капилляра, q - краевой угол смачивания. Для несмачивающих стенки капилляра жидкостей cos q < 0, что приводит к опусканию жидкости в капилляре ниже уровня плоской поверхности (h < 0). Из выражения (2) следует определение капиллярной постоянной жидкости а = [2 s 12/( r 1r 2)g]1/2. Она имеет размерность длины и характеризует линейный размер Z [ а, при котором становятся существенными КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ я. Так, для воды при 20 °С а = 0,38 см. При слабой гравитации (g : 0) значение а возрастает. На участке контакта частиц капиллярная конденсация приводит к стягиванию частиц под действием пониж. давления D p < 0.
Уравнение Кельвина. Искривление поверхности жидкости приводит к изменению над ней равновесного давления пара р по сравнению с давлением насыщ. пара ps над плоской поверхностью при той же температуре Т. Эти изменения описываются уравением Кельвина:

где - молярный объем жидкости, R - газовая постоянная. Понижение или повышение давления пара зависит от знака кривизны поверхности: над выпуклыми поверхностями (r0 > 0) p > ps; над вогнутыми (r0 < 0) р < рs. Так, над каплями давление пара повышено; в пузырьках, наоборот, понижено. На основании уравения Кельвина рассчитывают заполнение капилляров или пористых тел при капиллярной конденсации. Т. к. значения р различны для частиц разных размеров или для участков поверхности, имеющей впадины и выступы, уравение (3) определяет и направление переноса вещества в процессе перехода системы к состоянию равновесия. Это приводит, в частности, к тому, что относительно крупные капли или частицы растут за счет испарения (растворения) более мелких, а неровности поверхности некристаллич. тела сглаживаются за счет растворения выступов и залечивания впадин. Заметные различия давления пара и растворимости имеют место лишь при достаточно малых r0 (для воды, например, при r0 [ 0,1 мкм). Поэтому уравение Кельвина часто используется для характеристики состояния коллоидных систем и пористых тел и процессов в них.

Рис. 2. Перемещение жидкости на длину l в капилляре радиуса r; q - краевой угол.

Капиллярная пропитка. Понижение давления под вогнутыми менисками - одна из причин капиллярного перемещения жидкости в сторону менисков с меньшим радиусом кривизны. Частным случаем этого является пропитка пористых тел - самопроизвольное всасывание жидкостей в лиофильные поры и капилляры (рис. 2). Скорость v перемещения мениска в горизонтально расположенном капилляре (или в очень тонком вертикальном капилляре, когда влияние силы тяжести мало) определяется уравением Пуазёйля:

где l - длина участка впитавшейся жидкости, h - ее вязкость, D p - перепад давления на участке l, равный капиллярному давлению мениска: D p = — 2 s 12cos q /r. Если краевой угол q не зависит от скорости v, можно рассчитать количество впитавшейся жидкости за время t из соотношения:

l(t) = (rt s 12cos q /2 h )l/2. (5)

Если q есть функция v, то l и v связаны более сложными зависимостями. Уравнения (4) и (5) используют для расчетов скорости пропитки при обработке древесины антисептиками, крашении тканей, нанесении катализаторов на пористые носители, выщелачивании и диффузионном извлечении ценных компонентов горных пород и др. Для ускорения пропитки часто используют ПАВ, улучшающие смачивание за счет уменьшения краевого угла q . Один из вариантов капиллярной пропитки - вытеснение из пористой среды одной жидкости другой, не смешивающейся с первой и лучше смачивающей поверхность пор. На этом основаны, например, методы извлечения остаточной нефти из пластов водными растворами ПАВ, методы ртутной порометрии. Капиллярное впитывание в поры растворов и вытеснение из пор несмешивающихся жидкостей, сопровождающиеся адсорбцией и диффузией компонентов, рассматриваются физико-химической гидродинамикой. Помимо описанных равновесных состояний жидкости и ее движения в порах и капиллярах, к КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ я. относят также равновесные состояния очень малых объемов жидкости, в частности тонких слоев и пленоколо Эти КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ я. часто называют КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ я. II рода. Для них характерны, например, зависимость поверхностного натяжения жидкости от радиуса капель и линейное натяжение. КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ я. впервые исследованы Леонардо да Винчи (1561), Б. Паскалем (17 в.) и Дж. Жюреном (18 в.) в опытах с капиллярными трубками. Теория КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ я. развита в работах П. Лапласа (1806), Т. Юнга (1804), А. Ю. Давыдова (1851), Дж. У. Гиббса (1876), КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ С. Громеки (1879, 1886). Начало развития теории КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ я. II рода положено трудами Б. В. Дерягина и Л. М. Щербакова.

Химическая энциклопедия. Том 2 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
сколько стоит курсы по excel
Стул T-M C3419
багажник на крышу цена
дорн москва 2016

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(04.12.2016)