![]() |
|
|
КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯКАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ, сжижение пара в капиллярах, щелях или порах в твердых телах. Происходит при условии смачивания жидкостью поверхности конденсации и вследствие пониженного давления насыщенного пара р над вогнутым мениском по сравнению с давлением насыщенного пара рs над плоской поверхностью жидкости при той же температуре Т. Кол-во удерживаемой капиллярными силами жидкости зависит от радиуса кривизны r поверхности раздела жидкость - пар согласно уравению Кельвина (см. Капиллярные явления):
Одно из этих состояний, а именно отвечающее большему массосодержанию (кривая 2), является метастабильным. Капиллярный гистерезис наблюдается обычно, если поры имеют форму бутылок или четок вследствие блокировки узкими перешейками жидкости, содержащейся в расширенной части пор, а также в случае цилиндрич. пор, если образование конденсата происходит в результате утолщения и последующей смыкания адсорбционного пленоколо Опорожнение таких пор начинается при более низком давлении пара, чем заполнение. Для расчета изотерм КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ к. используют модельные системы - ансамбли цилиндрич. или щелевых пор различные размеров, решеточные системы, а также упаковки из частиц правильной формы. Обычно уравения КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ к. используют для решения обратной задачи: определения размеров пор и их распределения по размерам на основании изотерм опорожнения пор, с привлечением модельных представлений о геометрии порового пространства. КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ к. может наблюдаться не только в системах жидкость -пар, но и в заполняющих пористое тело бинарных жидких смесях вблизи критической точек смешения, а также в промерзающих пористых телах при наличии прослоек незамерзающей воды на внутр. поверхности пор. КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ к. используют для улавливания паров пористыми сорбентами. Большую роль КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ к. играет также в процессах сушки, удерживания влаги почвами, строит. и др. пористыми материалами. При p/ps < 1 отрицат. капиллярное давление может удерживать вместе смачиваемые жидкостью частицы, обеспечивая прочность таких структур. В случае несвязных пористых тел возможна их объемная деформация под действием капиллярных сил - так называемой капиллярная контракция. Так, рост капиллярного давления является причиной значительной усадки таких пористых тел при высушивании. КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ к. может быть причиной прилипания частиц пыли к твердым поверхностям, разрушения пористых тел при замораживании сконденсир. жидкости в порах. Для уменьшения эффекта КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ к. используют лиофобизацию поверхности пористых тел. Лит.: Адамcон А., Физическая химия поверхностей, пер. с англ., М., 1979; Современная теория капиллярности. Л., 1980; Хейфец Л. КАПИЛЛЯРНАЯ КОНДЕНСАЦИЯ, Неймарк А. В., Многофазные процессы в пористых средах, М., 1982; Дерягин Б. В., Чураев Н. В.. Муллер В. М., Поверхностные сапы, М., 1985 Н. В.Чураев.
Химическая энциклопедия. Том 2 >> К списку статей |
[каталог] [статьи] [доска объявлений] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|