химический каталог




ИОННОГО РАССЕЯНИЯ СПЕКТРОСКОПИЯ

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ИОННОГО РАССЕЯНИЯ СПЕКТРОСКОПИЯ, изучает распределение по энергиям (энергетич. спектр) ионов, упруго рассеянных поверхностью под определенным углом q . Спектр получают при действии на исследуемую поверхность моноэнергетич. пучков ионов. По положению пиков такого спектра идентифицируют элементы, а по высоте пиков определяют концентрацию последних. Кроме того, исследуя энергетич. спектр в зависимости от углов падения и рассеяния, можно получить информацию о структуре поверхности. Энергию иона, упруго рассеянного под углом q при однократном парном столкновении, можно рассчитать по формуле E = Eп(1 + М/т) - 2 {cos q + [(M2/m2) - sin2 q ]1/2}2 = КЕп, где Еп - энергия первичных ионов, М - масса атомов образца, m - масса первичных ионов, К - коэффициент рассеяния ионов. Формула справедлива при М/т > 1. Зная величины m, Eп, q , а также заряд (степень нейтрализации) рассеянных частиц и измерив Е, можно рассчитать M и идентифицировать поверхностные атомы. В зависимости от энергии первичных ионов различают спектроскопию рассеяния медленных ионов (Eп = 10 - 17 — 10 - 13 Дж) и спектроскопию рассеяния быстрых ионов (Еп = 10 - 14— 10 - 13 Дж), называют также спектроскопией резерфордовского или обратного ядерного рассеяния. В спектроскопии рассеяния медленных ионов в ионизованном состоянии покидает поверхность лишь 0,1-1% однократно рассеянных ионов. Т. к. зависимость К от сечений рассеяния и эффективность нейтрализации точно неизвестны, то количественное определения проводят в основные по эмпирическая градуировочным зависимостям. Аппаратура состоит из источника однозарядных моноэнергетич. ионов инертных газов (обычно Не+, Ne+, Аr+), например дуоплазмотрона с полым катодом, вакуумной камеры с давлением остаточных газов < 10 - 7 Па, держателя мишени, позволяющего вращать образец относительно направления первичного пучка, и энергетич. спектрометра (чаще всего электростатич. анализатора). При этом можно анализировать поверхностные монослои толщиной ~ 0,5 нм. В спектроскопии рассеяния быстрых ионов в качестве источника первичных ионов (в основные a -частиц) используют электростатич. генератор, тандемный ускоритель ионов или циклотрон. Ускоритель ионов должен давать высокомонохроматичные пучки первичных ионов в широком интервале Eп. Для регистрации энергетич. спектра рассеянных ионов обычно применяют полупроводниковый детектор (с разрешением 5-20 кэВ) в сочетании с многоканальным анализатором импульсов. Количеств. интерпретация данных о рассеянии быстрых ионов проще, чем в случае медленных ионов, и проводится с применением резерфордовского закона рассеяния, когда эффектом экранирования ядер электронами можно пренебречь. Частица, отраженная от поверхности твердого тела, обладает большей энергией, чем частица, отраженная от внутр. слоев мишени. Потери энергии связаны с электронным и ядерным торможением внутри твердого тела. Так как сечение рассеяния невелико, часть ионов, проникнувших в глубь мишени, двигается по прямой, испытывая в основные электронное торможение. После соударения с атомом, в результате которого направление движущегося иона меняется на угол > 90° (обратное рассеяние), он под действием электронного торможения опять по прямой направляется к поверхности материала. Т. обр., фиксируя спектры энергетич. потерь обратнорассеянных ионов, можно без разрушения образца получить информацию о распределении определяемого элемента по глубине. Например, используя рассеяние a -частиц с энергией ~ 10 - 13 Дж, можно исследовать слои толщиной в доли мкм с разрешением по глубине ~ 20 нм без послойного травления, которое необходимо в случае использования медленных ионов. Разрешение по глубине зависит от массы и энергии первичных ионов, массы атомов материала и энергетич. разрешения регистрирующей аппаратуры. По величине потерь энергии можно определять также толщину пленок на подложках. Пределы обнаружения элементов в ИОННОГО РАССЕЯНИЯ СПЕКТРОСКОПИЯ р. с. достигают 10 %. Этот метод применяют в основные для определения тяжелых примесей в легких основах: с использованием медленных ионов - на реальной поверхности, с использованием быстрых ионов - в субмикронных поверхностных слоях твердых тел (главным образом полупроводников). Лит.: Петров Н. Н., Аброян ИОННОГО РАССЕЯНИЯ СПЕКТРОСКОПИЯ А., Диагностика поверхности с помощью ионных пучков, Л., 1977; Пранявичюс Л., Дудонис Ю., Модификация свойств твердых тел ионными пучками, Вильнюс, 1980; Черепин В. Т., Васильев М. А., Методы и приборы для анализа поверхности, К., 1982. Ф. А. Гимельфарб.

Химическая энциклопедия. Том 2 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
мебельные кухонные ручки
наружняя реклама мосвап
http://taxiru.ru/faq/prikaz-n-410/
билеты на спектакль золотой ключик, или приключения буратино

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(24.08.2017)