химический каталог




ЗОЛЬ-ГЕЛЬ ПРОЦЕСС

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ЗОЛЬ-ГЕЛЬ ПРОЦЕСС (гелевая технология), технология получения материалов с определенными химический и физических-механические свойствами, включающая получение золя и последующей перевод его в гель. ЗОЛЬ-ГЕЛЬ ПРОЦЕСС-г. п. используют при производстве неорганическое сорбентов, катализаторов и носителей катализаторов, синтетич. цеолитов, вяжущих неорганическое веществ, керамики со спец. теплофизических, оптический, магн. и электрич. свойствами, стекла, стеклокерамики, волокон, керамич. ядерного топлива и др. На первой стадии ЗОЛЬ-ГЕЛЬ ПРОЦЕСС-г. п. формируется химический состав продукта (химический форма вещества и соотношение компонентов), который получают в виде высокодисперсного коллоидного раствора - золя. Размер частиц дисперсной фазы в стабильном золе 10 - 9-10 - 6 м. Увеличение концентрации дисперсной фазы приводит к появлению коагуляц. контактов между частицами и началу структурирования - гелеобразования (вторая стадия ЗОЛЬ-ГЕЛЬ ПРОЦЕСС-г. п.). Коагуляц. структуры характеризуются низкой прочностью, определяемой ван-дер-ваальсовыми силами, при этом взаимодействие частиц осуществляется через равновесную по толщине прослойку дисперсионной среды. Для так называемой коагуляц. структур дальнего взаимодействие сила взаимодействие частиц составляет 10 - 11-10 - 10 Н/контакт, а расстояние между ними - 10 - 8-10 - 7 м. Такие структуры характеризуются полным самопроизвольным восстановлением после механические разрушения (см. Тиксотропия). Дальнейшее повышение объемной концентрации и поверхности дисперсной фазы приводит к постепенному исчезновению способности к тиксотропному восстановлению, а по мере снижения содержания дисперсионной среды теряются также эластичные и пластич. свойства. При фиксации частиц в структуре, соответствующей ближней коагуляции, прочность коагуляц. контактов возрастает до 10 - 9-10 - 8 Н, а расстояние между частицами снижается до 10 - 9 м. На этой стадии могут возникнуть и атомные (точечные) контакты, характеризующиеся прочностью 10 - 8-10 - 6 Н/контакт. На практике чаще встречаются коагуляц. структуры обоих типов. Для повышения стабильности структур, регулирования реологич. свойств и управления процессами структурообразования воздействуют на прочность контактов путем модификации поверхности частиц добавками ПАВ или путем создания в растворе пространств. структуры высокомол. органическое полимера (см. также Коагуляция, Структурообразование в дисперсных системах). Высококонц. дисперсные системы используют при производстве неорганическое вяжущих веществ и различные паст. Такие системы обладают высокой пластичностью и практически неогранич. седиментационной устойчивостью; структура получаемых гелей сохраняется даже при таких больших размерах частиц дисперсной фазы, как 10 - 4 м. Это свойство используется при получении различные материалов, требующих введения в состав композиции более грубодисперсных частиц. Например, при производстве огнеупоров в качестве связующих грубых порошков применяют гели из того же материала, при этом температура спекания снижается. Коагуляц. силы способны не только сохранять форму геля, что важно при формовании изделий, но вызывать постепенное уплотнение геля, сопровождающееся выделением дисперсной фазы из пор геля, уменьшением его объема, повышением плотности и прочности. Этот эффект используется при формировании структуры геля с определенными объемным содержанием дисперсионной среды и размером пор, что важно при производстве сорбентов, в том числе мол. сит, и катализаторов. При удалении дисперсионной среды (третья стадия процесса) появляются прочные фазовые контакты, при этом тиксотропные свойства теряются и механические разрушения структуры становятся необратимыми. При высушивании гель превращаются в твердое тонкопористое тело (ксерогель) с конденсационно-кристаллизац. структурой. В процессе сушки может происходить заметное уплотнение геля и изменение его структуры. Разработаны способы сушки, уменьшающие этот эффект и обеспечивающие получение материалов с высокой открытой пористостью. Благодаря высокой дисперсности ксерогелей (размер частиц 10 - 8-10 - 6 м) путем формования и спекания производят прочные, плотные изделия с определенной геометрическая формой из тугоплавких материалов, например, из оксидов, карбидов и нитридов, причем температуры спекания на 100-300 °С ниже, чем при использовании методов порошковой технологии (см. Порошковая металлургия). Для получения золей применяют диспергационные (см. Диспергирование) и конденсационные методы. Первые включают механические способы, в которых преодоление межмолекулярных сил и накопление свободный поверхностной энергии в процессе диспергирования происходит при совершении внешний механические работы над системой. В лабораторная и пром. условиях используют шаровые и вибромельницы. Более тонкое диспергирование осуществляют в дезинтеграторах. Используют также ультразвуковые и электродинамич. методы. Затраты работы на диспергирование в пром. масштабах может быть значительно уменьшены путем абсорбц. понижения прочности диспергируемых тел. Для получения золей труднорастворимых оксидов часто применяют метод пептизации, при этом золи стабилизируются анионами, например Cl - , NO3 - . Конденсац. методы получения золя - это физических методы, основанные на конденсации пара, замене растворителя или изменении растворимости с температурой, и химические, основанные на конденсации новой фазы, возникающей при химический реакции. Для получения золя необходимо, чтобы одновременно возникло множество центров конденсации или зародышей новой фазы. При этом скорость образования зародышей должна намного превосходить скорость кристаллов. Разработаны методы, использующие экстракцию и ионный обмен, например, при получении золей ядерного топлива из исходных растворов соответствующих нитратов. Концентрирование полученных золей с последующей гелеобразованием осуществляют путем диализа, ультрафильтрации, электродиализа, упаривания при относительно низких температурах или экстракцией разбавителями, например, воды спиртами. Однако эти процессы медленны и не очень удобны для крупнотоннажного производства. Большое развитие получили методы производства гелевых или капиллярно-пористых материалов (силикагели, алюмогели и многие др.), в которых получение золей и гелей осуществляют как единый процесс с использованием конденсац. химический зарождения свободнодисперсных частиц с последующей структурированием в том же аппарате или объеме. Полученный гель отделяют от маточного раствора, промывают и подвергают термодинамически обработке. Иногда перед термодинамически обработкой материалу придают нужную форму, например, экструзией. Наиб. перспективны процессы, обеспечивающие получение гранулир. материалов в форме микросфер и осуществляемые для этого в капле раствора. Один из вариантов ЗОЛЬ-ГЕЛЬ ПРОЦЕСС-г. п. (метод внешний гелеобразования) для получения гранулир. керамич. материала заключается в экстракц. удалении дисперсионной среды - воды из капли золя оксида металла, взвешенной или медленно движущейся в потоке органическое экстрагента (длинноцепочечный алифатич. спирт). После отверждения (гелеобразования) гель-сферы выводят из потока экстрагента, сушат и подвергают термодинамически обработке. Др. вариант метода внешний гелеобразования - гель-поддерживающее осаждение - также включает массообмен на границе раздела двух фаз и отличается от описанного выше тем, что процессы получения золя и геля в объеме капли осуществляются без временного и пространственного их разделения. К раствору соли металла (например, нитрата Th) добавляют раствор полимера (например, поливинилового спирта) и формамид в качестве модификатора поверхности. Полученный раствор капельно диспергируется в ванну с раствором NH3, где происходит образование частиц твердой фазы высокой дисперсности в объеме капли. Прочность частиц обеспечивается структурой, состоящей из переплетенных молекул поливинилового спирта. После отверждения гель-сферы промывают водой, сушат и прокаливают до требуемой плотности. Разработано несколько вариантов этого процесса для получения оксидов элементов III-VI и VIII групп с использованием различные полимеров естеств. и искусств. происхождения, а также различные ПАВ. Разработан метод внутр. гелеобразования, который заключается в капельном диспергировании охлажденного метастабильного водного раствора, содержащего гидролизующуюся соль и реагенты (мочевина и гексаметилентетрамин), в горячую (не выше 100°С) не смешивающуюся с водой дисперсионную среду. В объеме капель при их нагревании происходит гомог. гидролиз и образуются гель-сферы практически идеальной формы. После отделения гель-сфер от дисперсионной среды их промывают раствором NH3, сушат и подвергают термодинамически обработке для получения микросфер с требуемыми характеристиками. Таким путем, например, получают оксидное ядерное топливо для виброуплотненных твэлов. Если в исходный раствор ввести коллоидный углерод, то в результате термодинамически обработки в вакууме получают карбиды в форме микросфер, а при обработке в атмосфере N2 - нитриды с плотностью, близкой к теоретической.

Химическая энциклопедия. Том 2 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
оформление президиума цена
Компания Ренессанс: лестница на второй этаж купить в москве - доставка, монтаж.
кресло 993
дешево хранение вещей москва

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(09.12.2016)