химический каталог




Абсорбция

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

АБСОРБЦИЯ газов (лат. absorptio, от absorbeo-поглощаю), объемное поглощение газов и паров жидкостью (абсорбентом) с образованием раствора. Применение абсорбции в технике для разделения и очистки газов, выделения паров из паро-газовых смесей основано на различной растворимости газов и паров в жидкостях. Процесс, обратный абсорбции, называется десорбцией; его используют для выделения из раствора поглощенного газа и регенерации абсорбента. Поглощение газов металлами (например, водорода палладием) называют окклюзией. Абсорбция - частный случай сорбции.

Различают физическую и химическую абсорбцию. При физической абсорбции энергия взаимодействия молекул газа и абсорбента в растворе не превышает 20 кДж/моль. При химической абсорбции (или абсорбции с химической реакцией, часто называемой хемосорбцией) молекулы растворенного газа реагируют с активным компонентом абсорбента-хемосорбентом (энергия взаимодействия молекул более 25 кДж/моль) либо в растворе происходит диссоциация или ассоциация молекул газа. Промежуточные варианты абсорбции характеризуются энергией взаимодействия молекул 20-30 кДж/моль. К таким процессам относится растворение с образованием водородной связи, в частности абсорбции ацетилена диметилформамидом.

Статика абсорбции. Характеризует термодинамическое равновесие раствора с паро-газовой смесью, а также материальный и энергетический балансы процесса. При физической абсорбции с образованием идеального раствора для растворителя и растворенного газа во всем интервале изменения состава в соответствии с законом Рауля растворимость газа:

в соответствии с законом Рауля растворимость газа

где Р°2- давление паров над чистым сжиженным газом при данной температуре системы; р2 - парциальное давление газа; звездочкой обозначаются параметры вещества в условиях равновесия. Индексы "1" и "2" относятся соответственно к растворителю и газу. Идеальная растворимость x*2,ид- функция только температуры, свойства растворителя влияния на нее не оказывают.

Зависимость растворимости газов х*2 от их парциального давления при физической абсорбция в бесконечно разбавленном растворе (х2 ->0) и при низких давлениях Р в системе описывается законом Генри (рис. 1, прямые 1 -3):

закон Генри

где КH-коэффициент Генри, изменяющийся с изменением температуры. Если абсорбция проводят под давлением, но х*2 ->0, растворимость газа можно рассчитать по уравнению Кричевского - Казарновского:

уравнение Кричевского - Казарновского

где Кф - коэффициент физической растворимости, равный КH при х2-> 0 и Р-> -> 0; f*2-летучесть газа;1001-26.jpg-парциальный мольный объем растворенного газа в жидкой фазе при бесконечном разбавлении; R- универсальная газовая постоянная; Po1-давление насыщ. паров чистого растворителя при абсолютной температуре системы Т. Если 0 < х*21001-27.jpg(0,05-0,1) молярной доли (разбавленные растворы), то при низких давлениях справедливо уравнение Сеченова:

уравнение Сеченова

где А1,2-коэффициент, не зависящий от состава раствора
ависимость растворимости некоторых газов в жидкостях парциального давления газов над растворами

Рис. 1. Зависимость растворимости х2* некоторых газов в жидкостях парциального давления газов над растворами: I- СО2 в воде при 20 °С; 2-СО2 в пропиленкарбонате при 25 С; 3 С2Н4 в диметилформамиде при 25 °С; 4-СО, в водном растворе содержащем 25% К2СО3 и 10% диэтаноламина при 60°C 5-СО, в 2,5 н водном растворе моноэтаноламина при 20°С; х2* - в м3 газа (при нормальных условиях - 20°С и 0,1 МПа) на 1 м3 жидкости. 2

Рис. 2. Зависимость коэффициент Генри (в мм рт. ст./молярные доли) для растворов газов в додекане от температуры.

Зависимость растворимости газа от температуры как при физической, так и при химической абсорбции приближенно описывается уравнением:

Зависимость растворимости газа от температуры при физической и при химической абсорбции

где1001-31.jpg-тепловой эффект растворения газа. Если раствор при абсорбции нагревается,1001-32.jpg . С изменением температуры 1001-33.jpg обычно либо остается постоянной, либо незначительно изменяется. растворимость газа в смешанном растворителе (содержащем малополярные компоненты) можно оценить по соотношению:
Зависимость растворимости газа от температуры как при физической, так и при химической абсорбции

где КН.си, КН.N-коэффициент Генри соотв. для газа в смеси растворителей и для растворов этого газа в чистых компонентах растворителя;1001-35.jpg-коэффициент активности компонентов растворителя (молярные доли1001-36.jpgотносятся к смеси растворителей, свободной от растворенного газа).

Некоторые данные о растворимости газов приведены в таблице, где газы и растворители расположены в порядке возрастания энергетических параметров1001-37.jpg и1001-38.jpg потенциала Леннард-Джонса. Эти параметры могут быть использованы для приближенной оценки растворимости газов при низких давлениях по уравнению:

оценки растворимости газов при низких давлениях

где1001-40.jpg-растворимость в 1 м3 газа, приведенная к нормальным условиям (20 °С, 0,1 МПа) на 1 м3 абсорбента; kв- константа Больцмана; Р0, T0-соотв. давление и температура при нормальных условиях; Р, Г-то же при рабочих условиях. растворимость умеренно растворимых газов в данном растворителе возрастает линейно с увеличением1001-41.jpg

Ниже приведены значения параметров потенциала Лен-нард-Джонса1001-42.jpg (в К) для газов1001-43.jpg и жидкостей1001-44.jpg:
значения параметров потенциала Лен-нард-Джонса

Тепловой эффект растворения газа АЯ линейно изменяется с увеличением1001-46.jpg ; соотв. растворимость плохо растворимых газов1001-47.jpg, в основном Не, Ne, H2, N2, CO, Аr, О2 и NO, с возрастанием температуры увеличивается (за исключением водных растворов), а растворимость хорошо растворимых газов1001-48.jpg уменьшается. Типичные примеры для бесконечно разбавленных растворов приведены на рис. 2. растворимость таких газов, как H2S, COS, SO2, HCl, NH3, Cl2, обычно значительно выше, чем рассчитанная по уравнению (1), вследствие специфических взаимодействий с молекулами растворителя.

При химической абсорбции поглотитительная способность абсорбента (емкость, соответствующая предельному количеству газа, который поглощается единицей объема абсорбента) и1001-49.jpg больше, чем при физической абсорбции. При необратимой реакции (например, при поглощении СО2 растворами NaOH с образованием Na2CO3) равновесное давление газа над раствором равно нулю, пока в растворе есть непрореагировавший абсорбент, и поглотит. способность определяется стехиометрией реакции. При обратимой реакции давление газа над раствором равно нулю, но по сравнению с физической абсорбцией резко изменяется характер зависимости растворимости газа от давления (рис. 1, кривые 4, 5). Так в простейшем случае, когда в растворе происходит только одна реакция и активности компонентов раствора равны их концентрациям, имеем:

1001-50.jpg

где Кх = ASKфKP - константа равновесия системы газ-жидкость; Кр — константа равновесия реакции;1001-51.jpg1001-52.jpg -равновесная степень превращения абсорбента; x1- начальная концентрация абсорбента; h-число молей продуктов реакции на 1 моль прореагировавшего газа; j-число молей абсорбента, вступивших во взаимодействие с 1 молем растворенного газа; A5 - коэффициент, зависящий от стехиометрии.

коэффициент ускорения абсорбция могут быть достаточно велики. Так, в случае поглощения СО2 в насадочной колонне при одинаковых нагрузках по фазам, температуре и давлении, используя 2 н. водный раствор КОН (15% К содержится в растворе в виде карбоната), можно получить1001-53.jpg по сравнению с физической абсорбции СО2 водой. Гипотетический идеальный растворитель, не обладающий сопротивлением переносу в жидкой фазе и имеющий бесконечно большую реакционную способность, обеспечил бы1001-54.jpg

Увеличение1001-55.jpg и1001-56.jpg (иногда в несколько раз) может происходить под влиянием поверхностной конвекции, вызываемой локальными градиентами поверхностного натяжения, которые возникают в ряде случаев в результате массоотдачи, особенно при одновременном протекании реакций (например, при абсорбция СО2 водными растворами моноэтаноламина). Это необходимо учитывать при подборе новых хемосорбентов. Значение1001-57.jpg если р-ция приводит к возникновению поверхностной конвекции, следует определять на основе коэффициент массоотдачи при физ. абсорбция, найденного в условиях воздействия на процесс конвективных микропотоков вблизи границы раздела фаз.

При расчете скорости абсорбции часто используют коэффициент массопередачи, определяемые по гипотетическим поверхностным составам и, следовательно, по гипотетическим движущим силам. Обычно принимают, что коэффициент массопередачи, отнесенный к концентрации в газе, Кг [кмоль/(м2 *МПа*с)] обусловлен движущей силой (у2-у*2), где у*2-молярная доля поглощаемого компонента в газе, которая отвечает равновесию с жидкостью, имеющей средний объемный состав х2; у2 -средний объемный состав газа в данном сечении аппарата. Тогда получим:

1001-58.jpg

Аналогично можно найти движущую силу (x*2 — х2) и коэффициент массопередачи Кж. Из выражений (2) и (3) следует:

1001-59.jpg

где т = (y2,гр — y*2)/(x2,гр - х2)-наклон равновесной линии в интервале концентраций от х2, у2до x2,гр, y2,гр. Выражение (4) записано для локального коэффициент массопередачи и показывает, что этот коэффициент зависит от наклона линии равновесия. Наиб. удобно рассчитывать коэффициент массопередачи по уравнению (4) в случаях, когда наклон равновесной линии остается почти постоянным в рабочем интервале концентраций. При искривленной линии равновесия необходимо учитывать зависимость m от концентрации.

Абсорбцию осуществляют в массообменных аппаратах, называемых абсорберами - тарельчатых, насадочных (устаревшее название - скрубберы), пленочных, роторно-пленочных и распылительных. Схема материальных потоков в абсорбере представлена на рис. 3. Связь между концентрациями поглощаемого компонента в газе у2 и в жидкости в любом горизонтальном сечении аппарата находят из уравнения материального баланса (т. наз. уравнение рабочей линии). В общем случае это уравнение имеет вид:

1001-60.jpg

где L и G-расходы жидкости и газа. Когда объемы фаз в ходе абсорбции изменяются незначительно, рабочая линия - прямая:

1001-61.jpg

Здесь индексом "н" обозначается нижнее сечение противоточного абсорбера или десорбера.

Существенное влияние на ход рабочей и равновесной [у* =f(x*2)] линий могут оказать тепловые эффекты абсорбции. Ход рабочей линии может сильно зависеть от интенсивности испарения растворителя (особенно при десорбции). Если абсорбция сопровождается значит. выделением теплоты, а количество абсорбированного вещества достаточно велико, растворитель может сильно нагреваться при прохождении через колонну. Примеры - осушка воздуха с помощью концентрированной H2SO4, растворение HCl в воде при получении концентрированной соляной кислоты. Температурный режим абсорбера, от которого зависят равновесное давление поглощаемого компонента, т.е. движущая сила процесса, физ.-хим. свойства системы и ход рабочей линии рассчитывают по уравнению теплового баланса абсорбера.
Схема материальных потоков в абсорбере

Рис. 3. Схема материальных потоков в абсорбере и хол рабочей и равновесной линий (а-при противотоке, 6-при прямотоке): ЛВ-рабочая линия; ОС-равновесная линия; и1001-63.jpg-движущая сила соотв. в газовой фазе в верх, и ниж. сечениях1001-64.jpg аосороера и в газовой и жидкой фазах на ступени.

При отсутствии внеш. подвода или отвода теплоты, при одинаковых температурах газа и жидкости и без учета испарения и конденсации абсорбента и теплот растворения др. газов изменение температуы абсорбента в любом сечении абсорбера составляет:1001-65.jpg , где Ср - теплоемкость раствора,1001-66.jpg -изменение концентрации газа в рассматриваемом сечении. Обычно принимают, что температура жидкости на межфазной границе и в объеме одинаковая. Поскольку наиб. концентрация растворенного газа и соотв. наиб. тепловыделение наблюдаются вблизи поверхности контакта фаз, температура межфазной поверхности, определяющая истинное равновесие, часто существенно отличается от температуы объема жидкости. Методы учета этого явления разрабатываются.

Чтобы вычислить поверхность массообмена F, необходимую для обеспечения желаемого изменения состава газа в абсорбере, можно использовать локальные значения скорости массопередачи [см. уравнение (3)1 совместно с уравнением материального баланса по абсорбируемому компоненту. При постоянстве коэффициент массопередачи по высоте аппарата:
1001-67.jpg

где G-мольная массовая скорость газа, кмоль/(м2*с);

1001-68.jpg

No,r-общее число единиц переноса в газовой фазе:

1001-69.jpg

Этот важный параметр зависит только от технологического режима процесса, определяется положением рабочей и равновесной линий и показывает, как влияет движущая сила абсорбции на высоту аппарата. Число единиц переноса, а следовательно, и высота абсорбера, бесконечно велики, если абсорбер работает при миним. количестве циркулирующего абсорбента, когда1001-70.jpg . При увеличении1001-71.jpg габариты аппарата уменьшаются, но возрастают расход энергии и степень растворения плохо растворимых компонентов газовой смеси, что приводит либо к их потере и загрязнению извлекаемого газа, либо к дополнит. затратам на разделение растворенных газов.

При расчете абсорберов, особенно тарельчатых, часто используют понятие эффективности ступени, или степени приближения к равновесию1001-72.jpg. Эту величину можно определить как отношение фактически реализованного изменения состава к изменению, которое произошло бы при достижении равновесия:1001-73.jpgгде индексом "в" обозначается верхнее сечение противоточного аппарата. Во многих типах ступенчатых контактных устройств достигнута1001-74.jpg . Это означает, что при мат. анализе таких устройств правомерно использовать понятие о равновесной ступени. Рассчитав число теоретических тарелок и зная эффективность ступени1001-75.jpg, можно определить число реальных ступеней, необходимых для обеспечения заданной степени разделения.

Основы технологии абсорбционных процессов. абсорбция часто осуществляют в виде абсорбционно-десорбционного цикла (циклический процесс), однако стадия десорбции может отсутствовать, если в результате абсорбция получают готовый продукт или регенерация поглотителя невозможна (разомкнутый процесс). На рис. 4 приведена одна из простейших схем абсорбционного разделения газов. Для снижения расхода энергии иногда применяют двух- и многопоточные схемы с отводом грубо- и тонкорегенерированного растворов в разных сечениях десорбера и подачей их в различные точки абсорбера либо направляют насыщенный раствор абсорбента в разные точки десорбера и т.п.
Принципиальная схема абсорбционно-десорбционного цикла

Рис. 4. Принципиальная схема абсорбционно-десорбционного цикла: 1 -абсорбер; 2-насос; 3-десорбер; 4 - холодильник; 5-теплообменник; 6-кипятильник; 7 - конденсатор.

Регенерацию абсорбентов (десорбцию газов) можно проводить снижением давления (вплоть до вакуумирования), нагреванием, отдувкой плохо растворимыми газами и парами кипящего абсорбента, а также сочетанием этих приемов.

Физическую абсорбцию осуществляют, как правило, при температуре окружающей среды (20-40°С) или при пониженных температурах, т.к. растворимость хорошо растворимых газов возрастает с уменьшением температуры. Кроме того, при снижении температуры уменьшается растворимость плохо растворимых газов, т.е. увеличивается селективность и снижаются потери плохо растворимого компонента и загрязнение им извлекаемого газа, а также уменьшаются давление паров абсорбента и его потери. При химической абсорбции увеличение температуры приводит к значит. росту коэффициент массопередачи и, помимо этого, к возрастанию растворимости мн. абсорбентов в разбавителях, а следовательно, к увеличению до определенного предела общей поглотит. способности абсорбента.

При физической абсорбции с повышением парциального давления поглощаемого компонента поглотит. способность абсорбента почти всегда увеличивается приблизительно пропорционально парциальному давлению или концентрации газа. Поэтому количество циркулирующего абсорбента почти не зависит от концентрации извлекаемого газа в исходной газовой смеси. При химической абсорбции характер изменения растворимости газа с ростом его парциального давления сильно зависит от константы равновесия реакции и степени превращения абсорбента. В результате при увеличении концентрации извлекаемого газа количество циркулирующего абсорбента возрастает.

Физ. абсорбция, как правило, наиб. эффективна при грубой очистке от больших количеств газа под давлением. Химическая абсорбция чаще всего применяют при извлечении малых количеств примесей и при тонкой очистке; при этом обычно существенно выше селективность абсорбента, ниже количество циркулирующего раствора вследствие большой поглотит. способности, меньше расход электроэнергии, но выше расход теплоты.

Режим абсорбции. При расчете абсорбция обычно задают параметры очищаемого газа (давление, температуру, состав) и предъявляют требования к очищенному газу. Необходимый для осуществления абсорбция расход жидкости (количество циркулирующего абсорбента) определяется материальным балансом и кинетикой абсорбция Концентрация у2,в извлекаемого компонента в очищенном газе зависит от х2,в:
1001-77.jpg

где1001-78.jpg-степень приближения к равновесию на выходе газа из абсорбера, зависящая от скорости процесса. В общем случае:
1001-79.jpg

где G2-количество извлекаемого газа. При необратимой реакции минимальное количество циркулирующего поглотителя определяют из стехиометрического уравнения реакции и находят1001-80.jpg .

Соотношение расходов жидкости и газа определяется уравнением:
1001-81.jpg

При разомкнутых процессах обычно1001-82.jpg , при циркуляционных - х2,в1001-83.jpgх2,р (концентрация газа в регенерированном растворе). В простейшем случае (при1001-84.jpg и1001-85.jpg ) имеем:1001-86.jpg. Если растворимость описывается законом Генри, то1001-87.jpg.При этом количество циркулирующего абсорбента не зависит от количества извлекаемого газа. При достижении равновесия на выходе из абсорбера
1001-88.jpg

Важный параметр процесса - т. наз. абсорбционный фактор:
1001-89.jpg

который при полном извлечении газа1001-90.jpg1. Этот фактор равен отношению тангенсов углов наклона рабочей и равновесной линий, которые выражают зависимость соотв. реальной и равновесной концентраций извлекаемого компонента в газовой фазе от его концентрации в жидкости. Параметр А одновременно характеризует избыток количества циркулирующего абсорбента по сравнению с минимально необходимым для полного извлечения растворимого газа.

Режим десорбции газов (регенерации абсорбентов). Максимально допустимую концентрацию растворенного компонента в регенерированном растворе1001-91.jpg определяют из условия равновесия на выходе из абсорбера (при противотоке). Минимально достижимую концентрацию газа1001-92.jpg в том же растворе при десорбции в результате снижения давления, нагревания или отдувки парами абсорбента находят с помощью условия равновесия на выходе раствора из десорбера:

1001-93.jpg

где Р и Рпар- общее давление в регенераторе и давление паров абсорбента. В некоторых случаях, особенно при регенерации хемосорбентов, предельная глубина регенерации определяется равновесием в к.-л. другом (не в нижнем) сечении десорбера. Это так называемое критическое сечение определяют после построения равновесной и рабочей линий десорбции либо специальным расчетом.

При регенерации отдувкой плохо растворимым газом предельная глубина регенерации не ограничена давлением и температурой в десорбере, но зависит, как и при отдувке парами абсорбента, от расхода отдувочного агента. Его минимальный расход1002-21.jpg находят из условия соблюдения уравнения (5) не только на выходе раствора из десорбера, но и в любом его сечении. Верх, сечение противоточного аппарата, где газ выходит из оегенератора, часто является лимитирующим. Тогда1002-22.jpg = G2Ф*, где Ф* = р*пар/p2*(t,x2,в)-отношение давления паров абсорбента к давлению газа над раствором. Если отдувка производится плохо растворимым газом, то Ф * = = (Р — p2,в*)/p2,в. При отдувке парами кипящего растворителя, когда температура в критическом сечении десорбера задана, Ф = = pпар/(Р - pпар). Окончат. расход отдувочного агента можно определить только после построения рабочей и равновесной линий, нахождения местоположения в аппарате критического сечения и оптимизации абсорбционно-десорбционного цикла.

При десорбции парами кипящего абсорбента давление, температура и концентрация газа в растворе связаны изобарной равновесной зависимостью Tкип от х2, где Tкип - температура кипения раствора при давлении Р в регенераторе. Расчет десорбции смеси газов проводят на основе уравнения, аналогичного (5):
1002-23.jpg

где1002-24.jpg-сумма давлений растворенных газов. Режим десорбции находят совместным решением уравнения (6) с уравнениями материального баланса по каждому компоненту методом последовательных приближений. Равновесную линию десорбции строят по уравнению:
1002-25.jpg

Построение рабочей линии при десорбции парами кипящего абсорбента значительно отличается от построения рабочей линии абсорбера и заключается в совместном решении уравнений материального и теплового балансов по участкам аппарата при заданном общем расходе теплоты. Рабочая и равновесная линии при десорбции (рис. 5) могут пересечься не в конечных точках х2,в или х2,н, как при абсорбции, а в промежуточном (критическом) сечении десорбера. Это характерно для "сильных" хемосорбентов (например, при десорбции СО2 из водных растворов моноэтаноламина) при их глубокой регенерации. Минимальный расход отдувочного агента определяется равновесием в критическом сечении и зависит от глубины регенерации.
линии десорбции СО2 из водного раствора моноэтаноламина

Рис. 5. Равновесная (/) и рабочие (2, 3) линии десорбции СО2 из водного раствора моноэтаноламина при давлении 0,18 МПа и разл. глубине регенерации: x2, у2-концентрации СО2 соотв. в газе и жидкости.

Др. параметры десорбции, в частности число единиц переноса, рассчитывают так же, как при абсорбция Однако коэффициент массопередачи могут неск. отличаться от величин, найденных при абсорбция, вследствие наличия пузырьков газа (пара), возникающих при кипении жидкости или в результате сброса давления, влияния теплоты конденсации отдувочного агента, существенного изменения расходов фаз по высоте аппарата. Скорость химической абсорбции зависит от скорости прямой реакции образования соединения между поглощаемым газом и активной частью хемосорбента, а скорость десорбции - от скорости разложения этого соединения и т.п.

Расход энергии на абсорбционное разделение газовых смесей. Этот расход складывается из расхода электроэнергии на циркуляцию раствора, подачу отдувочного и охлаждающего (воды или воздуха) агентов, рециркуляцию газовых потоков и расхода теплоты. При циклических процессах физическая абсорбция в основном потребляется электроэнергия на перекачивание раствора, а при химической абсорбции - теплота на его регенерацию. При регенерации раствора теплота расходуется на его нагревание (Qнагр)" покрытие теплоты десорбции Qдес (численно равной теплоте абсорбции) и на создание отдувочного пара (Qотд), если отдувка осуществляется парами кипящего абсорбента:
1002-27.jpg

где1002-28.jpg и1002-29.jpg-тепловые эффекты соотв. испарения абсорбента и десорбции;1002-30.jpg-разность температур регенерированного и насыщ. растворов на холодном конце теплообменника. Давление десорбции может сильно сказываться на расходе энергии, особенно при регенерации под вакуумом. При десорбции парами кипящего абсорбента соответствующие изменения давления и температуры вызывают изменение Ф*. Если
1002-31.jpg

то с увеличением температуры Qотд возрастает. В противном случае Qотд уменьшается и при заданном расходе теплоты с увеличением давления десорбции регенерация не ухудшается, а улучшается, однако до нек-рого предела, определяемого термохимической устойчивостью абсорбента и возрастанием Qнагр. Энергетические затраты на десорбцию газов (регенерацию абсорбентов), как правило, значительно превышают расход энергии на абсорбцию.

Лит.: Рамм В. М., Абсорбция газов, 2 изд., М., 1976; Очистка технологических газов, под ред. Т. А. Семеновой, И. Л. Лайтеса, 2 изд., М., 1977; Кафаров В. В., Основы массопередачи, 3 изд., М., 1979; Шервуд Т., Пигфорд Р., Уилки Ч., Массопередача, пер. с англ., М., 1981 Н.Н. Кулов, И. Л. Лейтес


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
http://help-holodilnik.ru/remont_model_3996.html
fimet магазин синдика
подставка под шкаф металлический для одежды
во 25-188-9-2

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(23.07.2017)