химический каталог




ГИДРОГЕНИЗАЦИЯ УГЛЯ

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ГИДРОГЕНИЗАЦИЯ УГЛЯ, превращение высокомол. веществ органическое массы угля (ОМУ) под давлением водорода в жидкие и газообразные продукты при 400-500 °С в присутствии различных веществ-органическое растворителей, катализаторов и т.д. Научные основы этого процесса были разработаны в нач. 20 в. В. Н. Ипатьевым, Н. Д. Зелинским, Ф. Бергиусом, Ф. Фишером и др. В 30-х гг. в некоторых странах, в частности в Германии и Великобритании, были построены пром. предприятия для получения из угля и кам.-уг. смол бензина, дизельного топлива, смазочных масел, парафинов, фенолов и т. п. В 40-х гг. производство жидких продуктов из угля превышало 4 млн. т/год. В 50-х гг. ГИДРОГЕНИЗАЦИЯ УГЛЯ у. была освоена в пром. масштабе в СССР.

В 50-х гг. открыты богатые месторождения нефти в СССР, на Ближнем Востоке и в др. районах мира. Произ-во синтетического жидкого топлива из угля практически прекратилось, так как его стоимость была в 5-7 раз выше стоимости моторного топлива, получаемого из нефти. В 70-х гг. цена на нефть резко повысилась. Кроме того, стало очевидным, что при существующих масштабах потребления нефти (~ 3 млрд. т/год) запасы ее, пригодные для добычи экономичными методами, будут истощены в нач. 21 в. Проблема вовлечения твердого топлива, главным образом угля, в переработку для получениях жидких продуктов-заменителей нефти стала вновь актуальной.

Для ГИДРОГЕНИЗАЦИЯ УГЛЯ у. применяют неокисленные бурые и малометаморфизованные каменные угли. Содержание минеральных части в них не должно превышать 5-6%, отношение С : Н- 16, выход летучих веществ должен быть более 35%, содержание петрографич. компонентов группы витринита и липтинита-более 80%. Высокозольные угли необходимо предварительно подвергать обогащению.

Орг. масса угля с содержанием С 70-85%, обычно применяемого для гидрогенизации, представляет собой самоассоциированный мультимер, состоящий из пространственно структурированных блоков (олигомеров). Блоки включают макромолекулы из атомов углерода, водорода и гетероатомов (О, N, S), что обусловливает неравномерное распределение электронной плотности, поэтому в блоках осуществляется донорно-акцепторное взаимодействие, в т.ч. образуются водородные связи. Энергия разрыва таких связей не превышает 30 кДж/моль. Различают блоки с молекулярная масса 200-300, 300-700 и 700-4000, растворимые соответственно в гептане (масла), бензоле (асфальтены) и пиридине (асфальтолы). Внутри блоков макромолекулы связаны метиленовыми, а также О-, N- и S-содержащими мостиками. Энергия разрыва этих связей в 10-15 раз больше энергии разрыва блоков. При ГИДРОГЕНИЗАЦИЯ УГЛЯ у. в первую очередь происходит разъединение блоков. последующей деструкция блоков требует повыш. температуры, присутствия активного Н2. Для получения из угля жидких продуктов необходимо наряду с деструкцией осуществить гидрирование образующихся низкомолекулярный непредельных соединений.

Принципиальная технол. схема ГИДРОГЕНИЗАЦИЯ УГЛЯ у. представлена на рисунке. Начальные операции-подготовка угля. Для повышения удельная поверхности уголь измельчают до частиц размером менее 0,01 мм, часто совмещая этот процесс с сушкой. Лучшие результаты достигаются при вибропомоле и измельчении в дезинтеграторе. Уд. поверхность при этом возрастает в 20-30 раз, объем переходных пор-в 5-10 раз. Происходит механохимический активация поверхности, в результате чего повышается реакционное способность угля (особенно при измельчении в смеси с растворителем-пастообразователем и катализатором). Важное место занимает сушка. Влага заполняет поры, препятствуя проникновению к углю реагентов, выделяется в ходе процесса в реакционное зоне, снижая парциальное давление Н2, а также увеличивает количество сточных вод. Угли сушат до остаточного содержания влаги1,5%, используя трубчатые паровые сушилки, вихревые камеры, трубы-сушилки, в которых теплоносителем служат горячие топочные газы с миним. содержанием О2 (0,1-0,2%), чтобы уголь не подвергался окислению. Во избежание снижения реакционное способности уголь не нагревают выше 150-200 °С.

Для увеличения степени превращения ОМУ в жидкие продукты на уголь наносят катализатор (из растворов солей, в виде порошка, эмульсии или суспензии) в кол-ве 1-5% от массы угля. Чем активнее катализатор, тем при более низком давлении может быть осуществлена ГИДРОГЕНИЗАЦИЯ УГЛЯ у. Макс. каталитических активностью обладают соединение Mo, W, Sn, при использовании которых ГИДРОГЕНИЗАЦИЯ УГЛЯ у. можно проводить при относительно низком давлении-10-14 МПа. Однако их применение ограничено из-за трудности регенерации из смеси с остатком непревращенного угля. Поэтому во многие процессах применяют дешевые, хотя и малоактивные, катализаторы (например, так называемой красный шлам-отход после выделения Al2О3 из бокситов), компенсируя их недостаточную активность повышением давления водорода до 30-70 МПа.

Принципиальная технологическая схема гидрогенизации угля.

Эффективность ГИДРОГЕНИЗАЦИЯ УГЛЯ у. в значительной степени определяется химический составом и свойствами растворителя-пастообразователя, в смеси с к-рым (50-60% пастообразователя) уголь подвергается переработке. Пастообразователь должен содержать высококипящие фракции продукта ГИДРОГЕНИЗАЦИЯ УГЛЯ у. (температура кипения > 325 °С) с миним. содержанием асфальтенов для удержания угля в жидкой фазе. В большинстве вариантов ГИДРОГЕНИЗАЦИЯ УГЛЯ у. к пастообразователю добавляют вещества с водорододонорными свойствами для стабилизации блоков, образующихся из угольного мультимера при относительно низкой температуре (200-350 оС), когда молекулярный водород малоактивен. Блоки легко отщепляют водород у доноров и благодаря этому не "слипаются".

Водорододонорный компонент пастообразователя получают гидрированием фракции ГИДРОГЕНИЗАЦИЯ УГЛЯ у. с температура кипения 300-400°С. В этом случае би-, три- и тетрациклический ароматические углеводороды частично гидрируются с образованием гидроароматические производных, которые способны отдавать водород с более высокими скоростями, чем нафтеновые углеводороды. Кол-во донора в пастообразователе может составлять 20-50% (состав пастообразователя оптимизируется в зависимости от вида сырья и условий гидрогенизации). В качестве донора используют также высококипящие фракции нефтепродуктов.

Степень превращения ОМУ повышается при введении в пастообразователь органическое добавок-соединений, способных вступать во взаимодействие с углем и продуктами его деструкции (у-пиколин, хинолин, антрацен и др.). Добавки также временно стабилизируют реакционноспособные радикалы, образующиеся при первичной деструкции угля, и т. обр. препятствуют образованию побочных продуктов конденсации.

Полученную углемасляную пасту в смеси с циркулирующим водородсодержащим газом (80-85% Н2 на входе, 75-80%-на выходе) нагревают в системе теплообмена и трубчатой печи и затем направляют на гидрогенизацию в реактор. На 1 т пасты вводят 1,5-5,5 тыс. м3 газа. Часть газа подают в реактор холодным для охлаждения реакционное смеси и поддержания постоянной температуры, поскольку при ГИДРОГЕНИЗАЦИЯ УГЛЯ у. выделяется 1,2-1,6 МДж на 1 кг угля. При возрастании температуры увеличивается скорость деструкции ОМУ, однако одновременно уменьшается скорость гидрирования.

Гидрогенизацию осуществляют в трех или четырех последовательно расположенных цилиндрич. пустотелых реакторах. Длительность ГИДРОГЕНИЗАЦИЯ УГЛЯ у., как правило, определяется объемной скоростью подачи углемасляной пасты в реакционное систему. Эта скорость зависит от типа угля, пастообразователя, катализатора, температуры и давления процесса. Оптимальная объемная скорость подбирается эмпирически и составляет обычно 0,8-1,4 т на 1м3 реакционное объема в час (разрабатываются процессы с более высокой объемной скоростью).

Продукты реакции разделяют в сепараторе на парогазовую смесь и тяжелый остаток - шлам. Из первого потока выделяют жидкие продукты (масло, воду) и газ, который после отделения предельных углеводородов (С14), NH3, H2S, CO2 и СО, Н2О обогащают 95-97%-ным Н2 и возвращают в процесс. Шлам разделяют на жидкие продукты и твердый остаток. Жидкие продукты после отделения воды подвергают дистилляции на фракцию с температура кипения до 325-400 °С и остаток, который возвращают в процесс для приготовления пасты.

В связи со сложным строением ОМУ, различные реакционное способностью ее фрагментов конечные жидкие продукты содержат много компонентов, преимущественно моно- и бициклические ароматические и гетероциклический соединения с примесями парафиновых и нафтеновых углеводородов, а также фенолы, пиридиновые основания и др. вещества, которые могут быть выделены.

Для "облагораживания" жидких продуктов, выход которых составляет 50-80% от массы ОМУ (в зависимости от состава угля), их подвергают гидроочистке, т. е. гидрируют на отдельной стадии при 10-30 МПа и 360-400 °С на стационарном алюмокобальт- или алюмоникельмолибденовом катализаторе. Легкокипящие фракции может быть использованы в качестве компонентов моторного топлива, а высококипящие-донора водорода для приготовления углемасляной пасты. Соотношение бензина и дизельного топлива от 1 :3 до 1 :5 в зависимости от целей и условий процесса. В качестве примера в таблице приведена характеристика жидких продуктов гидрогенизации бурого угля Ирша-Бородинского месторождения Канско-Ачинского бассейна.

ХАРАКТЕРИСТИКА ЖИДКИХ ПРОДУКТОВ ГИДРОГЕНИЗАЦИИ БУРОГО УГЛЯ КАНСКО-АЧИНСКОГО БАССЕЙНА

Бензиновые фракции имеют октановое число 72 в чистом виде и после каталитических риформинга может быть применены как высокооктановый компонент автомобильного бензина или сырье для получения бензола, ксилолов. С целью увеличения выхода бензина более высококипящие фракции подвергают гидрокрекингу.

Химическая энциклопедия. Том 1 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
тейп лента для лица купить
входные группы в москве
вес завесы воздушной cap-n
Рекомендуем фирму Ренесанс - лестница винтовая на второй этаж купить - продажа, доставка, монтаж.

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(25.11.2017)