химический каталог




ВОДОРОДНАЯ ЭНЕРГЕТИКА

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ВОДОРОДНАЯ ЭНЕРГЕТИКА, использует водород как носитель энергии. ВОДОРОДНАЯ ЭНЕРГЕТИКАэ. также включает: получение Н2 из воды и др. природные сырья; хранение Н2 в газообразном и сжиженном состояниях или в виде искусственно полученных химический соединение, например гидридов интерметаллич. соединений; транспортирование Н2 к потребителю с небольшими потерями. ВОДОРОДНАЯ ЭНЕРГЕТИКА э. пока не получила массового применения. Методы получения Н2, способы его хранения и транспортировки, которые рассматриваются как перспективные для ВОДОРОДНАЯ ЭНЕРГЕТИКА э., находятся на стадии опытных разработок и лабораторная исследований.

Выбор Н2 как энергоносителя обусловлен рядом преимуществ, главные из которых: экологич. безопасность Н2, поскольку продуктом его сгорания является вода, исключительно высокая , равная - 143,06 МДж/кг (для условного углеводородного топлива — 29,3 МДж/кг); высокая теплопроводность, а также низкая вязкость, что очень важно при его транспортировании по трубопроводам; практически неогранич. запасы сырья, если в качестве исходного соединения для получения Н2 рассматривать воду (содержание воды в гидросфере 1,39*1018т); возможность многостороннего применения Н2. Водород может быть использован как топливо во многих химический и металлургич. процессах, а также в авиации и автотранспорте как самостоятельное топливо, так и в виде добавок к моторным топливам.

Перспективно использование Н2 для передачи энергии так называемой химический способами. По одному из них смесь Н2 с СО, полученная на первой ступени каталитических конверсии метана, передается к потребителю по трубопроводу и поступает в аппарат - метанатор, в котором осуществляется обратная экзотермодинамически реакция: ЗН2 + СО -> СН4 + Н2О. Выделяемое тепло может быть использовано для бытового и пром. теплоснабжения, а паро-газовая смесь возвращается обратно в цикл для конверсии метана.

Традиц. способы получения Н2 (см. Водород)для ВОДОРОДНАЯ ЭНЕРГЕТИКА э. экономически не выгодны. Для нужд ВОДОРОДНАЯ ЭНЕРГЕТИКА э. предполагается усовершенствовать традиц. методы и разработать новые, нетрадиционные, используя ядерную и солнечную энергию. Предлагаемое усовершенствование основные традиц. метода получения Н2 - каталитических конверсии природные газа и газов нефтепереработки - заключается в том, что процесс проводят в кипящем слое катализатора, тепло подводят от высокотемпературного ядерного газоохлаждаемого реактора (ВТГР). Применение этого метода позволит более чем в 10 раз увеличить объемную скорость процесса, снизить температуру в химический реакторе на 150°С, уменьшить затраты на производство Н2 на 20-25%. Однако ВТГР, обеспечивающие высокие температуры теплоносителя (ок. 1000°С), пока находятся в стадии разработок. Др. вариант получения Н2 - водно-щелочной электролиз под давлением с использованием дешевой разгрузочной электроэнергии, вырабатываемой в ночное время атомной электростанцией. Расход электроэнергии на получение 1 м3 Н2 составляет 4,3-4,7 кВт*ч (по обычному способу 5,1-5,6 кВт*ч), напряжение на ячейке 1,7-2,0 В при плотности тока» 3-5 кА/м2 и давлении в электролизере до 3 МПа. Использование установок по получению Н2 в ночное время на атомных электростанциях позволит регулировать график их суточной нагрузки и снизить себестоимость Н2. Полученный Н2 может направляться на нужды промети либо использоваться как топливо на электростанции для выработки дополнительной электроэнергии в дневное время.

Ниже описаны предлагаемые нетрадиц. методы получения Н2. Электролиз воды с использованием в качестве электролита расплава щелочи (т. называют расплавнощелочной электролиз), твердого полимера (твердополимерный, или ТП-электролиз), керамики на основе ZrO2 (высокотемпературный, или ВТ-электролиз) требует затрат электроэнергии на 30-40% меньше, чем традиц. способ. При расплавнощелочном электролизе концентрация воды в электролите составляет 0,5-2,0% по массе (иногда 4%), давление атмосферное, температура определяется выбором щелочи. Использование твердых электролитов позволяет значительно сократить расстояние между электродами в ячейке (до 250 мкм), в результате чего в несколько раз повышается плотность тока без увеличения напряжения на ячейке электролизера. В качестве электролита при ТП-электролизе можно использовать, например, пленку из сульфированного фторопласта-4; температура процесса до 150°С, достижимый кпд электролизера 90%, расход электроэнергии на получение 1 м3 Н2 3,5 кВт*ч. наиболее перспективен ВТ-электролиз с использованием тепла от ВТГР: электролитом служит керамика из ZrO2 с добавками оксидов металлов (преимущественно Y2O3, CaO, Sc2O3); температура процесса 800-1000 °С, достижимый уровень расхода электроэнергии на получение 1 м3 Н2 2,5 кВт*ч при плотностях тока 3-10 кА/м2.

Из плазмохимический методов получения Н2 наиболее перспективен двухстадийный углекислотный цикл, включающий: 1) диссоциацию (2СО2 -> 2СО + О2), осуществляемую в плазмотроне с энергетич. эффективностью до 75-80%; 2) конверсию СО с водяным паром (СО + Н2О -> Н2 + СО2), после которой образовавшийся СО2 возвращается в плазмотрон.

Термохимический циклы получения Н2 представляют собой совокупность последоват. химический реакций, приводящих к разложению исходного водородсодержащего сырья (обычно воды) при более низкой температуре, чем та, которая требуется для термодинамически диссоциации. Так, степень термодинамически диссоциации воды при 2483°С составляет 11,1%. В этих циклах все компоненты системы, кроме водородсодержащего сырья, регенерируются. Ниже приводятся примеры термохимический циклов разложения воды.

Сернокислотный:

Представляют интерес также сероводородные термохимический циклы, например:

При использовании H2S вместо воды снижаются затраты энергии на получение Н2, так как энергия связи Н—S в сероводороде значительно меньше энергии связи Н—О в воде, и кроме Н2 образуется сера - важное химический сырье.

Перспективен радиолиз воды и водных растворов СО2, H2SO4, HCl, HBr, H2S, AgCl и др. под действием ядерного излучения (жесткого, нейтронного). наиболее мощные источники такого излучения - ядерные реакторы. Для развития этого метода необходимо создать источники ядерного излучения с высокой энергонапряженностью, разработать системы, способные поглощать реагирующей средой более 50% энергии излучения и использовать ее с радиац. выходом более 10 молекул Н2 на 100 эВ.

Исследуются фотохимический методы получения Н2 с использованием солнечной энергии. Осуществлен фотоэлектролиз воды (с раздельным получением Н2 и О2); метод будет представлять практическое интерес, если его кпд достигнет 10-12% (пока он составляет ок. 3%). Биофотолиз воды основан на том, что некоторые микроорганизмы (например, хлорелла), поглощающие солнечную энергию, способны разлагать воду. Средний кпд трансформации солнечной энергии такими микроорганизмами составляет ок. 8%.

Для хранения и транспортирования Н2, кроме обычных методов, разработанных для жидкого и газообразного водорода, перспективно использование твердых соединений - гидридов металлов и интерметаллидов. Последние способны реагировать с большими кол-вами Н2 при невысоких температурах и давлениях (см. Гидриды). Из гидридов интерметаллидов наиболее интересны соединение на основе Ti, Fe, Mg, Ni, La и V. Они содержат до 400 см3 Н2 на 1 г гидрида, выделяют Н2 при сравнительно низких температурах (150-200 °С) и относительно дешевы. Для хранения гидридов интерметаллидов разработаны спец. емкости - гидридные баки. Гидриды интерметаллидов может быть использованы, в частности, на автотранспорте. Гидридный бак устанавливается на автомобиле и обогревается отработавшими газами двигателя: гидрид разлагается и выделяется водород, который подается в двигатель как добавка к бензину.

Химическая энциклопедия. Том 1 >> К списку статей


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
аренда звукового оборудования цена
ликонтин комфорт капли низкая цена
курсы 1с предприятие в южном бутово
Супермаркет техники KNSneva.ru предлагает игровой неттоп купить - офис в Санкт-Петербурге, ул. Рузовская, д.11, КНС Нева.

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(08.12.2016)