химический каталог




Курс коллоидной химии

Автор С.С.Воюцкий

лоидных размеров а^Ю-6 см, а Окр~0,01 эрг/см2. Иначе говоря, самопроизвольное диспергирование возможно для получения коллоидных систем, у которых oit 2 < аир « 0,01 эрг/см2.

При самопроизвольном диспергировании образуются дисперсные системы, характеризующиеся нормальными кривыми распределения с некоторым наиболее вероятным радиусом частиц. Это значит, что существует какая-то оптимальная, характерная для данной системы дисперсность. Дальнейшее самодиспергирование вплоть до молекул П. А. Ребиндер с сотр. считают невозможным. Согласно их точке зрения термодинамическая устойчивость двухфазных дисперсных систем определяется двумя условиями: достаточно низким межфазным поверхностным натяжением и быстрым его повышением с уменьшением радиуса частиц. Однако причины повышения межфазного натяжения с уменьшением размера частиц трудно объяснить.

Можно дать и другие объяснения, почему явление самодиспергирования не идет до молекул. Так, при разбавлении водой эмуль-солов отдельные молекулы углеводорода не могут существовать в системе из-за нерастворимости углеводорода в воде. По этой причине образовавшиеся молекулы углеводорода тотчас слипаются друг с другом в капельки, а присутствующее в системе поверхностно-активное вещество адсорбируется на этих капельках и понижает О], 2 До значений, меньших Окр. Таким образом, при растворении эмульсола одновременно протекают два противоположно направленных процесса — растворение эмульсола до молекул и слипание молекул углеводорода в агрегаты, адсорбирующие поверхностно-активное вещество. При установлении равновесия между обоими процессами получается устойчивая равновесная эмульсия. Размеры капелек этой эмульсии определяются количественным соотношением углеводород : поверхностно-активное вещество, природой обоих компонентов, температурой и т. д.

В случае образования критических эмульсий при нагревании двух несмешивающихся при обычной температуре жидкостей невозможность растворения вплоть до молекул объясняется двумя одновременно протекающими, но противоположно направленными процессами. С одной стороны, идет диспергирование вплоть до молекул одной из фаз, а с другой — одновременно происходит ко-алесценция капелек этой фазы, в результате чего устанавливается динамическое равновесие, которое тотчас нарушается с изменением температуры. Конечно, состояние критической эмульсии также соответствует минимальной свободной энергии системы. ? В заключение обобщим кратко те термодинамические положения, которые необходимо иметь в виду при рассмотрении различных методов синтеза коллоидных систем.

При получении коллоидных систем методом диспергирования работа, затрачиваемая на преодоление межмолекулярных сил при дроблении дисперсной фазы, запасается системой в виде свободной энергии на межфазной поверхности. Избыток свободной энергии делает систему термодинамически неустойчивой. Для придания системе агрегативной устойчивости избыток свободной энергии должен быть уменьшен посредством адсорбции. Однако практически в результате адсорбции никогда не удается избавиться от свободной поверхностной энергии полностью, и поэтому устойчивость типичных коллоидных систем носит обычно временный характер, -При дроблении вещества, понятно, увеличивается энтропия системы. Однако увеличение энтропии благодаря сравнительно большим размерам частиц не сказывается сколько-нибудь заметно на устойчивости коллоидного раствора. Только при очень малых межфазных поверхностных натяжениях увеличение энтропии может приводить к самопроизвольному диспергированию и образованию равновесных коллоидных систем.

Для пептизации внешней энергии на перевод осадка в раствор не требуется, так как свежий осадок представляет собой первичные частицы, очень непрочно слипшиеся друг с другом только в отдельных местах. Для преодоления сил сцепления в систему достаточно ввести пептизатор, диффундирующий к поверхности частиц и образующий на ней двойной электрический слой или соль-ватную оболочку.

Фактором, обусловливающим при этом равномерное распределение частиц по всему объему жидкости, ставших свободными и устойчивыми, является броуновское движение.

Получение коллоидных систем путем самопроизвольного диспергирования близко по своему существу к пептизации. В этом случае работа диспергирования мала благодаря небольшой межфазной свободной энергии. При этом работа диспергирования настолько невелика, что для коллоидного растворения достаточно одного теплового движения. Возрастание энтропии системы в результате более равномерного распределения диспергированного вещества с избытком компенсирует увеличение свободной поверхностной энергии вследствие возрастания поверхности раздела фаз.

Наиболее сложными кажутся на первый взгляд термодинамические условия получения коллоидных систем методом конденсации. Может даже показаться, что золи, синтезированные, например, в результате химической реакции, образуются самопроизвольно и, следовательно, их получение сопровождается уменьшением свободной энергии системы. Однако не следует забывать, что при химической реакции свободную энергию системы следует сравнивать не со свободной энергией растворов исходных компонентов реакции, а со свободной энергией полученной системы с выкристаллизовавшейся дисперсной фазой. При этом причины неустойчивости коллоидных растворов, полученных методом конденсации, становятся совершенно ясными.

2. СТРОЕНИЕ КОЛЛОИДНЫХ МИЦЕЛЛ

Ознакомившись со строением двойного электрического слоя, составляющего внешнюю оболочку мицеллы, и с физико-химическими основами ~ синтеза коллоидных систем, можно перейти к рассмотрению строения коллоидных мицелл в целом.

Строение мицелл в золях интересовало ученых уже давно, и по этому вопросу имеется множество мнений, часть из которых представляет теперь лишь исторический интерес

Иордис в 1902 г. при изучении химических методов получения различных золей пришел к выводу, что состав коллоидных мицелл не соответствует тем веществам, которые должны образоваться в результате предполагаемой реакции. Иордис один из первых отметил, что дисперсная фаза золя всегда содержит в качестве примеси вещества, из которых она была получена При удалении этих веществ, например, путем диализа, золь теряет устойчивость. На основании этого Иордис правильно считал, что примеси не безразличны для коллоидной системы. Согласно Иордису, коллоидная частица представляет собой комплексное соединение сложного состава.

Аналогичных взглядов придерживался и известный французский ученый Дюкло Он, как и Иордис, считал весьма существенным для свойств коллоидных систем присутствие в них небольших количеств исходных веществ и полагал, что эти примеси входят в состав коллоидных частиц. Например, состав частиц золя AS2S3, получающегося в результате взаимодействия AS2O3 и H2S и всегда содержащего небольшие количества H2S, Дюкло изображал формулой

As2S3 • nH2S

С помощью буквенного коэффициента п в этой формуле Дюкло хотел подчеркнуть возможность широкого изменения содержания H2S в коллоидной частице. Для подобной сложной частицы Дюкло первый пр

страница 82
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

Скачать книгу "Курс коллоидной химии" (4.52Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
где в минске купить металлосайдинг блок хаус
нужно ли ээг для справки на оружие
курсы парикмахеров в свао ю в москве с нуля
купить белый журнальный стол

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(05.12.2016)