химический каталог




Курс коллоидной химии

Автор С.С.Воюцкий

ии возрастает, так как нагревание всегда способствует ускорению установления равновесия в системе. С другой стороны, при повышении температуры адсорбция, отвечающая равновесному состоянию, падает. Таким образом, кинетические кривые адсорбции при разных температурах должны пересекать друг друга, как это и показано на рис. IV, 14.

Температурный коэффициент скорости физической адсорбции невелик. Это связано с тем, что энергия активации физической адсорбции близка к нулю, и ускорение адсорбции с повышением температуры обусловлено, главным образом, только увеличением скорости подвода адсорбтива к поверхности адсорбента в результате роста скорости диффузии. При хемосорбции температурный коэффициент скорости адсорбции имеет тот же порядок, что и при химических процессах, так как энергия активации хемосорбции достаточно велика и температура значительно ускоряет химическое взаимодействие.

9. ВЛИЯНИЕ НА АДСОРБЦИЮ СВОЙСТВ АДСОРБЕНТА И АДСОРБТИВА. ДИНАМИЧЕСКАЯ АДСОРБЦИЯ. АДСОРБЦИЯ ИЗ СМЕСЕЙ ГАЗОВ

Влияние свойств адсорбента. Как следует из рассмотренных теорий адсорбции, на способность того или иного адсорбента адсорбировать газы сильно влияет его пористость, а также его физическое состояние. Аморфные адсорбенты обычно гораздо лучше адсорбируют газ, чем кристаллические. Это объясняется, очевидно, тем, что поверхность аморфного адсорбента шероховата, в то время как поверхность кристалла, за исключением ребер и углов, гладкая.

Непористые адсорбенты, получаемые в результате химических реакций в растворе и последующего осаждения (например, сульфат бария), а также путем размельчения твердых тел, обладают обычно сравнительно небольшой удельной поверхностью (1— 10 м2/г) и поэтому имеют довольно ограниченное применение. Более высокодисперсные адсорбенты с непористыми частицами можно получить при неполном сгорании органических соединений (углеродные, или черные сажи) или кремнийорганических соединений (белые сажи), а также в результате гидролиза галогенидов кремния (SiCl4, S1F4) в парах воды (аэросилы). Получаемые порошки с удельной поверхностью порядка сотен м2/г применяют в качестве наполнителей полимеров, лаков и смазок.

В качестве поглотителей, осушителей, катализаторов или носителей каталитически активных веществ обычно используют вы- . сокодисперсные пористые адсорбенты. Такие адсорбенты применяют, как правило, не в виде порошка, а в форме достаточно механически прочных гранул или таблеток. Это обеспечивает значительные удобства при их применении (отсутствие пыления) и уменьшает сопротивление потоку газа или жидкости, из которого проводится адсорбция.

В качестве тонкопористых адсорбентов наиболее часто применяют древесный уголь, животный (костный) уголь, силикагель, различные природные силикаты, алюмогель и алюмосиликагель. Из древесных углей для адсорбции применяют уголь, полученный из твердых древесных пород, так как уголь, полученный из мягких пород, например из сосновой древесины, весьма непрочен и легко рассыпается. Лучшие сорта угля для адсорбции получают из скорлупы кокосовых орехов и абрикосовых косточек. Кроме того, для адсорбции обычно применяется активный уголь.

Обычный уголь (уголь-сырец) имеет сравнительно небольшую адсорбционную способность, так как его удельная поверхность сравнительно невелика и поры в значительной степени заполнены смолами и продуктами неполного сгорания, образующимися приполучении угля. Активирование угля заключается в термической обработке, в результате которой его удельная поверхность увеличивается, при этом продукты неполного сгорания частично сгорают, частичо улетучиваются. Термическую обработку угля, во избежание больших потерь в результате сгорания, проводят в атмосфере водяного пара или двуокиси углерода (при 750—950 °С). Содержащиеся в угле органические вещества, а частично и сам уголь реагируют с водяным паром и двуокисью углерода с образованием СО и Н2. Поскольку эти процессы эндотермические, активирование в атмосфере пара или двуокиси углерода легко остановить в тот момент, когда сгорят ненужные органические вещества и не будет еще затронута основная часть угля. Изменение структуры угля при активировании показано на рис. IV, 15. (области,

Рис IV, 15. Постепенное изменение структуры угля при его активировании.

занятые смолами и продуктами неполного сгорания, на рисунке заштрихованы). Удельная поверхность активного угля колеблется в пределах от 300 до 1000 м2/г, а диаметр микропор — от 30 до 90 А.

Уголь как адсорбент применяется для заполнения противогазов, рекуперации растворителей, рафинирования сахара, обесцвечивания многих жидкостей, очистки воздуха в промышленных предприятиях, а также используется в медицине. Адсорбцию активным углем не следует смешивать с активированной адсорбцией.

Другим адсорбентом, часто применяющимся на практике, является силикагель—гидратированная двуокись кремния, приготовленная в виде очень пористого тела или порошка. Силикагель обычно получают, вводя раствор силиката натрия при сильном перемешивании в 5—10%-ный раствор хлористоводородной кислоты. Образовавшийся пористый силикагель измельчают и промывают водой. Затем кусочки силикагеля сушат при температуре около 500 °С, дробят до частиц нужных размеров и для удаления пыли отсеивают. Удельная поверхность приготовленного таким образом силикагеля составляет 400—500 м2/г. Капилляры силикагеля несколько шире, чем капилляры активного угля, и более однородны по размерам.

Силикагель отличается от угля меньшей адсорбционной способностью при очень низких давлениях и способностью избирапо

тельно поглощать пары воды. Поэтому его обычно применяют для осушки газов.

В последнее время широкое применение в качестве адсорбентов получили молекулярные сита. Примером таких сит являются цеолиты, кристаллы которых построены из чередующихся кремне- и алюмокислородных тетраэдров и содержат поры с диаметром от 4 до 7,5 А в зависимости от типа цеолита. Рыхлые пространственные решетки цеолитов способны поглощать и удерживать достаточно малые молекулы, в то время как большие молекулы в эти решетки проникнуть не могут. На этом и основано молекулярно-ситовое действие цеолитов, используемых для осушки, разделения смесей паров и выделения растворенного вещества из растворов, В частности, осушка органических растворителей с помощью цеолитов основана на том, что молекулы воды (диаметр 2,75 А) легко проникают в узкие поры кристаллов цеолита, в то время как большие по размерам молекулы растворителя в такие поры не попадают.

Существенным преимуществом пористых кристаллов является высокая однородность их пор по размерам.

Влияние свойств адсорбтива. Как уже было указано, Соссюр установил, что газ адсорбируется тем лучше, чем легче он сжижается, чем выше его критическая температура. Позднее было установлено, что адсорбция газа тем больше, чем выше температура кипения вещества. Установлена также связь между адсорбцией и теплотой испарения газа. Наконец, Аррениус нашел, что количество адсорбированного газа увеличивается с возрастанием константы а в известном уравнении Ва

страница 37
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

Скачать книгу "Курс коллоидной химии" (4.52Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
тумба санфорини
купить кресло для домашнего кинотеатра в москве
Ariston CLAS EVO SYSTEM 15 FF
концерт киркорова купить билет

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(05.12.2016)