химический каталог




Курс коллоидной химии

Автор С.С.Воюцкий

вает на то, что их устойчивость обусловлена не электростатическими силами, а в основном гидратацией полярных участков цепей стабилизатора. Однако агрегативная устойчив вость латексов, содержащих неионогенный стабилизатор, в изоэлектрическом состоянии ниже, чем агрегативная устойчивость исходных латексов. Таким обра* зом, заряд латексных глобул, обусловленный адсорбцией ионов, все же способ* ствует повышению устойчивости латексов.

Стабилизирующая роль гидратации, вероятно, заключается в том, чтобы обеспечить эффективное отталкивание при взаимодействии таких гидратирован* ных слоев (расклинивающее давление).

Процесс скрытой коагуляции и образования геля под действием электролитов у латексов, стабилизованных неионогенными поверхностно-активными веществами, наступает только при повышенной температуре. Скорость коагуляции тем выше, чем интенсивнее дегидратирующие факторы: температура, концентрация электролита, тип коагулирующего иона.

13 Зак. 664

385

4. ПЕНЫ

Типичные пены представляют собой сравнительно весьма грубые высококонцентрированные дисперсии газа (обычно воздуха) в жидкости. Пузырьки газа в таких системах имеют размер порядка несколько миллиметров, а в отдельных случаях и сантиметров. Благодаря избытку газовой фазы и взаимному сдавливанию пузырьки пены имеют не сферическую форму, а представляют собой полиэдрические ячейки, стенки которых состоят из весьма тонких пленок жидкой дисперсионной среды. Пленки пены часто обнаруживают интерференцию; это свидетельствует о том, что их-толщина соизмерима с длиной световых волн.

В результате того, что пена состоит из таких полиэдрических ячеек, она имеет сотообразную структуру. Плато установил, что в соответствии с требованием минимума свободной поверхностной энергии на одном-жидком ребре ячейки всегда сходятся три пленки, образующие между собой равные углы в 120°, и что в одной точке могут сходиться лишь четыре ребра. Большой размер отдельных газовых пузырьков и тесное расположение их в пене исключают возможность броуновского движения. Кроме того, в результате особой структуры устойчивые пены обладают некоторой жесткостью или механической прочностью. Вообще, по строению обычные пены весьма напоминают высококонцентрированные эмульсии.

От типичных пен, представляющих высококонцентрированные дисперсии газа в жидкости, следует отличать низкоконцентрированные системы Г/Ж, в которых газовые пузырьки находятся на сравнительно большом расстоянии друг от друга. Примером такой дисперсной системы могут служить газированная вода, пиво или шипучее вино, содержащие пузырьки двуокиси углерода. Эти системы по свойствам ближе к разбавленным эмульсиям. Однако благодаря большой _разнице в плотностях жидкой и газовой фазы такие системы обладают очень малой седиментационной устойчивостью и существуют непродолжительное время.

Пены образуются при диспергировании газа в жидкости в присутствии стабилизаторов или, как их целесообразно называть в этом случае, пенообразователей. Жидкости без пенообразователей сколько-нибудь устойчивой пены не дают.

Прочность и продолжительность существования (время жизни) пены зависят от свойств пленочного каркаса, в свою очередь определяющихся природой и содержанием в системе пенообразователя, адсорбированного на межфазной поверхности. К типичным пенообразователям в случае водных пен принадлежат такие поверхностно-активные вещества, как спирты, жирные кислоты, мыла и мылоподобные вещества, белки, сапонин (экстрагируемый из растений глюкозид, обладающий поверхностно-активными свойствами). Существенно, что эти вещества обусловливают и устойчивость эмульсий углеводородов в воде.

Устойчивость пей

Устойчивость пен можно

существоУстойчивость пен зависит от природы и концентрации пенообразователя. Со временем пленки между пузырьками пены становятся тоньше вследствие стекания жидкости, пузырьки лопаются, пена разрушается и, наконец, вместо пены остается одна жидкая фаза — раствор пенообразователя в воде или другой жидкости.

вания пены, т. е. временем, прошедшим с момента образования пены до момента полного ее разрушения. Другой способ оценки устойчивости пены заключается в ^пропускании с заданной скоростью через вспениваемую жидкость пузырьков воздуха и определения равновесной высоты образующегося при этом столба пены. Постоянная высота столба пены устанавливается в тот момент, когда скорость разрушения пены равна скорости ценообразования и, очевидно, может служить мерой устойчивости пены. Устойчивость пены удобно изучать также по времени жизни отдельного газового пузырька на поверхности жидкости, граничащей с воздухом. С этой целью пузырек воздуха выдавливают в жидкость с помощью капилляра с загнутым концом. Пузырек всплывает и, достигнув поверхности, задерживается там на некоторое время, прежде чем лопнет. Это время жизни пузырька обычно пропорционально времени существования столба пены в целом.

Существенно, что во время пребывания пузырька воздуха на поверхности жидкости пленка, покрывающая пузырек, становится все тоньше, о чем иногда можно судить по изменению интерференционных цветов пленки. Когда пленка достигает толщины меньше 0,01 мкм, интерференция становится уже почти незаметной, пленка темнеет, так как почти не отражает света, и затем через некоторое время разрушается. Однако в особых условиях, когда исключены испарение жидкой среды, сотрясения и другие внешние воздействия, пены могут существовать неограниченно долго. Например, Дьюару удалось обеспечить существование мыльного пузыря в течение трех лет.

По наблюдению Б. В. Дерягина и А. С. Титиевской мыльная пленка, достигшая наименьшей толщины, состоит из двух монослоев молекул пенообразователя, разделенных полимолекулярным слоем воды.

Сравнительно малое время существования пены и тот факт, что разрушению ее пузырька всегда предшествует стекание жидкости в пленке пены, приводит к выводу, что устойчивость пены в обычных условиях носит кинетический характер, а роль пенообразователя сводится в значительной степени к замедлению стекания жидкости.

Как видно из данных, приведенных в табл. XII, 1, водные растворы спиртов и жирных кислот образуют малоустойчивые пеиы с продолжительностью существования, ие превышающей 20 е. Максимальная продолжительность существования пеиы приходится иа средние члены гомологических рядов. Низшие члены

13*

387

обоих рядов, очевидно, слишком мало поверхностно-активны для того, чтобы образовывать устойчивые пены; высшие же члены ряда обладают недостаточной для этого растворимостью.

Таблица XII, 1. Оптимальная концентрация водного раствора пенообразователя и максимальная продолжительность существования пены

Спирты

Этиловый 280 5

Пропиловый 340 11

i/зо-бутиловый 90 12

Язо-амиловый 36 17

Третичный амило- 34 10

вый

Гептиловый 0,7 8

Октиловый 0,3 5

Кислоты

Муравьиная 450 4

Уксусная 200 8

Пропионовая 250 И

Масляная 1000 18

Валерьяновая 15 9

Капроновая 7,5 13

Гептиловая 1.5 16

Каприловая 0,25 12

Нониловая 0,07 5

Каждому спирту или кислоте отвечает оптимальная ко

страница 139
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

Скачать книгу "Курс коллоидной химии" (4.52Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
люстра diamand 2721-10, 10хg4/20w (h=120, w=60)
курсы по таможенному оформлению краснодар с трудоустройством
как можно офрмить витрину магазина в москве в 2016 году
цвета с доставкой на дом

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(09.12.2016)