химический каталог




Курс коллоидной химии

Автор С.С.Воюцкий

что

V = *отн - 1 = °Ф (х- Ю>

Из всего сказанного следует, что, по Эйнштейну, между вязкостью системы и содержанием в ней дисперсной фазы должна су-" ществовать прямолинейная зависимость. Весьма существенно также, что, согласно Эйнштейну, вязкость не зависит от дисперсности суспензии.

Экспериментальную проверку уравнения Эйнштейна проводили Банселен на суспензиях гуммигута, Оден на золях серы и наиболее обстоятельно Эйрих на суспензиях мельчайших стеклянных шариков, шарообразных спор грибов и дрожжевых клеток. Во всех этих исследованиях при сферической форме частиц и малых концентрациях дисперсной фазы численный коэффициент при <р имел значение, близкое к 2,5. Отклонения наблюдались, когда частицы не были шарообразны, концентрация дисперсной фазы в суспензии была значительной и между частицами существовали электрические или другие силы взаимодействия.

Влияние анизодиаметричности частиц. При палочкообразной, эллипсоидной или пластинчатой форме частиц суспензии вязкость системы всегда больше, чем должна быть согласно уравнению Эйнштейна. Причина этого заключается в том, что жидкость, попадающая в объем (эллипсоид вращения), образующийся вокруг нешарообразных частиц, находящихся в интенсивном броуновском движении, становится как бы связанной с частицей. В результате этого возникает кажущееся увеличение объемной доли дисперсной фазы в системе, что и приводит к повышению вязкости. ^

т

Экспериментально показано, что вязкость суспензии с малыми анизодиамет-рическими частицами, находящимися обычно в интенсивном броуновском движении, повышается пропорционально квадрату отношения большой и малой осей эллипсоида вращения, а вязкость суспензии с достаточно большими нешарообразными частицами, совершающими медленное броуновское движение, возрастает лишь прямо пропорционально отношению осей.

Теоретические вычисления, проведенные Куном, Симха и другими исследователями с использованием в качестве моделей частиц самой разнообразной формы, весьма сложны и не всегда убедительны. Поэтому до сих пор еще иет общей теории зависимости вязкости коллоидных систем от формы частиц.

Вязкость систем, содержащих анизодиаметрические частицы, как мы видели, зависит от скорости течения. Вытянуты^ частицы ориентируются в потоке, вращат/ельное движение их затрудняется и в результате этого вязкость системы с увеличением скорости течения снижается. Подобное явление можно наблюдать, например, при измерении вязкости золя V2O5, частицы которого сильно ани-зодиаметричны.

Влияние истинной концентрации дисперсной фазы и сольватации. Отличие вязкости концентрированной дисперсной системы от значений вязкости, вычисленной по уравнению Эйнштейна, объясняется тем, что в жидкости около частиц возникают взаимовозму-щающие микропотоки, затрудняющие движение системы. Дебройн считает, что при этом, помимо гидродинамических взаимодействий, необходимо учитывать также и механические (столкновения частиц, образование пар и т. д.).

При очень малых концентрациях суспензии поток, возникающий вокруг одной частицы, очень мало влияет на потоки, возникающие около других частиц, и на скорость движения всего потока жидкости в целом. Однако с увеличением концентрации дисперсной фазы это влияние все увеличивается и приводит к отклонению от закона Эйнштейна.

Другое объяснение отклрнения вязкости дисперсных систем от значений, найденных с помощью уравнения Эйнштейна, заключается в сольватации частиц. Явление сольватации может объяснить и часто наблюдающуюся зависимость вязкости от дисперсности системы при одинаковой объемной концентрации дисперсной фазы.

Влияние сольватации можно представить следующим образом. Если к поверхности шарообразной частицы радиусом г прилип слой дисперсионной среды толщиной h, то влияющий на вязкость эффективный объем частицы (объем самой частицы вместе с объемом сольватного слоя) составляет 4/зя(г -f- h)a. Для значений h, малых по сравнению с г, будем иметь ч/зя(/*3-f-3/"2/t), Соответственно этому при вычислении эффективной объемной концентрации дисперсной фазы ф за объем дисперсной фазы следует принять не величину 4/3nr3v, а 4/зя(г3 +3r2/i)v (где v — численная концентрация). Если принять истинный объем дисперсной фазы ф0 — 4/зЯГ3у, то для ф получаем:

Ф = Фо(1 + Zhfr) (Х.20)

Следовательно, -величина ф окажется больше объема дисперсной фазы Фог и эта величина будет тем больше, чем меньше частицы. Иными словами, вязкость возрастает с уменьшением размера частиц золя. Подобное возрастание-иязкости при повышении степени дисперсности золя серы наблюдал Свен Оден.

Фикенчер и Марк для учета влияния сольватации предложили модифицировать уравнение Эйнштейна, введя в него соответствующую поправку. Согласно этим авторам, в уравнении Эйнштейнаг так же как и в уравнении Ван-дер-Ваальса, вместо общего объема системы следует ввести эффективный объем, т. е. объем системы за вычетом объема частиц. Так как частицы в системе находятся в сольватированном состоянии и, кроме того, совершают броуновское движение, описывая некие тела вращения, то объем дисперсионной среды, энергетически и стерически связанной с частицами, также следует причислить к объему дисперсной фазы. Тогда уравнение (X, 18) примет вид:

где v* — объем частицы имеете с энергетически и стерически связанной с ней средой.

Уравнение Фикенчера и Марка хорошо объясняет, почему в некоторых случаях вязкость возрастает с увеличением концентраций дисперсной фазы быстрее, чем это должно быть в соответствии с прямолинейной зависимостью. Действительно, с увеличением концентрации дисперсной фазы в растворе возрастает пропорциональная ей величина п в числителе и одновременно уменьшается величина (V — nv') в знаменателе, что и приводит к более быст-^ рому возрастанию вязкости, чем концентрации.

Влияние взаимодействия между частицами. Причина неприменимости в некоторых случаях уравнения Эйнштейна к дисперсным системам может заключаться в проявлении сил притяжения между коллоидными частицами. При этом в системе образуются более или менее рыхлые структуры, которые включают значительные объемы дисперсионной среды. Подобная иммобилизация, т. е. . уменьшение подвижности растворителя, приводит к тому, что вязкость системы оказывается гораздо больше той, которая может быть вычислена по уравнению Эйнштейна. Вязкость в таких системах сильно зависит от скорости течения, так как представляет собой структурную вязкость, обусловленную наличием в системе рыхлых пространственных сеток.

• С другой стороны, неприменимость уравнения Эйнштейна к коллоидным системам может быть связана и с проявлением сил отталкивания между частицами, несущими одноименный электрический заряд. Согласно Смолуховскому, вязкость золей с заряженными частицами выше вязкости золей с незаряженными частицами. Повышение вязкости в результате наличия на поверхности частиц двойного электрического слоя называется электро вяз костным эф" фектом.

Смолуховский вывел следующее уравнение, связывающее удельную вязкость золя с электрокинетическим ^-потенциалом двойного электрического слоя частиц

страница 119
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

Скачать книгу "Курс коллоидной химии" (4.52Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
футбольная форма для детей в ставрополе
промывание миндалин вакуумным методом цена
fissler blackedition в москве
стеллаж настенный

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(03.12.2016)