химический каталог




Аморфные металлы

Автор К.Судзуки, X.Фудзимори, К.Хасимото

Прокатка расплава

Распыление расплава (спрей-метод)

Тонкая проволока

Кавитациониый метод Распыление расплава вращающимся диском Электроразряд в масле Экструзия расплава Вытягивание волокон из вращающегося барабана Вытягивание расплава в стеклянном капилляре

2.1.1. МЕТОД ВАКУУМНОГО НАПЫЛЕНИЯ

Метод вакуумного напыления -[б], уже довольно давно используется для изготовления аморфных пленок простых металлов и некоторых сплавов. Суть метода состоит в следующем. Металл или сплав нагревают в вакууме (обычно1 10-»—1(Н Па), при этом с его поверхности испаряются (сублимируются) атомы, которые затем осаждаются на массивную охлаждаемую плиту-подложку. Для нагрева образца применяются печи сопротивления, высокочастотные индукционные печи, электронный луч, а в качестве подложки используют стекло или сапфир. Напыляемые атомы металла в вакууме движутся прямолинейно, сталкиваются с подложкой и «прилипают» к ней. При этом, однако, на подложку попадают и атомы газа (например, кислорода), которые неизбежно присутствуют в вакууме, в результате эти атомы будут присутствовать и в напыляемой пленке, поэтому ее свойства оказываются существенно зависящими от степени вакуумирования и наличия остаточного газа того или иного сорта.

При изготовлении аморфных пленок методом вакуумного напыления обычно необходимо поддерживать температуры ниже комнатных. В частности, в случае напыления чистых металлов подложка должна быть охлаждена до температур порядка температуры жидкого гелия. Если температура недостаточно низка и лежит выше температуры Тх напыляемого металла, получаемая пленка не аморфизируется. Например, в случае полупроводников—кремния и германия, у которых Тх выше комнатной температуры, можно использовать подложку и при комнатной температуре, а в случае таких переходных металлов, как железо, кобальт и никель, у которых Тх очень низкая (у железа 4 К, у кобальта 33 К и у никеля ~70 К) должна быть низкой и температура подложки1.

При изготовлении пленок из сплавов обычно используется одновременное напыление нескольких элементов. В основе метода лежит различие в упругости паров элементов, входящих в состав сплава. Однако регулировать состав получаемой пленки довольно трудно. Поскольку обычно температура Тх у сплавов сравнительно высока, то легко добиться, чтобы температура подложки была ниже Тх, что и делают, например,"в случае получения сплава железа с 10% (ат.) германия, у которого Тх= 130 К- Все же для получения аморфных сплавов этот метод можно применять лишь ограниченно. В частности, при изготовлении аморфных сплавов, состоящих из элементов с сильно различающейся упругостью паров, необходимо тщательно регулировать скорость напыления разных элементов. При этом нужно поддерживать постоянство количественных соотношений между элементами, осаждаемыми на подложку. Здесь в последнее время начинают применяться методы машинного контроля. Скорость напыления определяется сортом элементов, уровнем вакуума, структурой подложки и обычно составляет 0,5— 1,0 нм/с.

Для аморфизации сплавов метод напыления более предпочтителен, чем для чистых металлов, ибо упрощается аппаратура и некоторые операции, в связи с тем, что при получении пленок сплавов не требуется глубокого охлаждения подложки. Однако, как уже указывалось, метод вакуумного напыления имеет ограничения по сортам атомов компонентов сплава. Кроме того, при использовании этого метода трудно регулировать состав сплава, поэтому для массового производства он непригоден.

2.1.2. Метод распыления

Метод распыления <[6]; состоит в следующем1. В газовую атмосферу с низким давлением помещаются два электрода, между которыми наводится разность потенциалов, в результате чего газ ионизируется. Ионы сталкиваются с электродом, выбивая атомы с его поверхности. При столкновении ионов газа с твердой поверхностью электрода происходят различные процессы, схематично показанные на рис. 2.2. В результате удара из металла выбиваются

изменяется с изменением энергии ионов Et. При увеличении Et до 150 эВ он возрастает как ??; в интервале Et от 150 до 400 эВ — растет пропорционально Et, и далее до 5000 эВ — пропорционально у?(, после чего практически не увеличивается. Когда Et достигает ~10 кэВ, число ионов, внедряющихся в твердый электрод, становится очень большим. Это уже соответствует ионной имплантации1.

В методе напыления, в котором используется нагрев металла, энергия движения атомов, осаждающихся на подложке, крайне мала и составляет не более чем2 kTm (~0,1 эВ). В методе распыления энергия движения атомов, достигающих поверхности металла, из-за наличия напряжения в несколько сот и даже тысяч вольт, доходит до значений3 ~ 10 кэВ. Если электрическое поле приложить в косом направлении, величина этой энергии еще более возрастет4. Для процесса распыления характерно то, что атомы испускаются в широком интервале углов, а также то, что даже если компоненты сплава имеют различную упругость пара, все равно можно получить пленку почти такого же состава, каков он у катода, с хорошей плотностью

страница 18
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

Скачать книгу "Аморфные металлы" (4.28Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
свадебные букеты из пионов недорого
курсы графического редактирования
машинопись word курсы цена
купитьтиски слесарные тсч-150 поворотные гомель

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(07.12.2016)