химический каталог




Поликарбонаты

Автор О.В.Смирнова, С.Б.Ерофеева

вие большей разности концентраций примесей в жидкостных потоках, по сравнению с циклическими процессами промывки. Таким образом, при увеличении относительной площади контакта от нескольких десятков до нескольких сотен раз и уменьшении диаметра капель снижается радиальное расстояние диффузного перехода примесей, заключенных внутри капель, что приводит к значительному увеличению эффективности процесса промывки в диспергированной среде, снижению ступеней промывки и количества промывной воды. Метод становится экономически выгодным при промышленном оформлении, тем более что он не требует сложного и громоздкого оборудования.

Кроме того, этот метод применим для промывки растворов поликарбонатов как с низкой, так и с высокой (~20%) концентрацией, что неосуществимо в других известных методах промывки.

Описан метод [2] очистки поликарбонатов, заключающийся в пропускании газообразного хлористого водорода через реакционную смесь для превращения третичного амина в хлористоводородную соль, с последующим выделением хлористоводородной соли амина.

При использовании этого метода можно исключить

78

стадию промывки водой и не применять громоздкое перегонное оборудование.

После окончания поликонденсации и разбавления реакционной смеси дополнительным количеством растворителя для уменьшения вязкости раствора полимера через смесь пропускают сухой хлористый водород. Избыток амина при этом превращается в соответствующую соль, которую отделяют фильтрованием или декантацией полимерного раствора. В этих условиях исчезает опасность разложения полимера.

После удаления хлористоводородной соли амина полимер осаждают из реакционного раствора добавлением осадителей, например низших алифатических эфиров (этилацетат), низших алифатических спиртов (метанол, этанол, изопропанол и т. д.), кетонов (ацетон), смеси ацетона и спирта и др. Если в качестве осадителя полимера использовался ацетон или смесь ацетона и спирта, то ничтожные следы хлористоводородной соли амина легко удаляются из полимера, поскольку последняя растворима в ацетоне.

Если в качестве осадителя для выделения полимера использовать другие вещества, то следы хлористоводородной соли амина могут быть удалены достаточно хорошо при добавлении в раствор полимера карбоната щелочного металла, который реагирует с остаточными количествами хлористоводородной соли амина или с избытком хлористого водорода; затем смесь фильтруют для отделения образовавшихся при осаждении неорганических солей (карбонаты, бикарбонаты, хлориды).

Кроме того, поликарбонат обрабатывают также низшим алифатическим спиртом или фенолом сразу же после поликонденсации (перед фильтрованием, или после фильтрования раствора полимера). При добавлении спирта конечные галогенформиатные группы поликарбоната превращаются в алкил- или арилкарбонатные группы, в зависимости от примененного спирта, согласно реакции:

О—С—CI + ROH )- О—С—OR + НС1

где R — фенильный или алкильный радикал с числом углеродных атомов от I до 4.

79

Поликарбонат, полученный по этой методике, устойчив к старению, нагреванию и гидролизу.

Очистку поликарбоната осуществляют также по следующей схеме: выделяют твердый поликарбонат из реакционной смеси, перемешивают полученные твердые частицы в промывной смеси, состоящей из воды и очистного агента, представляющего собой эфир монокарбоновой кислоты (этилацетат, бутилацетат, метилпропионат), ке-тон или простой эфир (диэтиловый, дипропиловый) и отделяют частицы поликарбоната от жидкости. Выбранный агент для очистки характеризуется тем, что он не смешивается с водой, способствует набуханию частичек поликарбоната, но не растворяет их и является растворителем для бисфенола.

Для предотвращения коагуляции поликарбоната рабочую жидкость подкисляют 0,2—1,0% уксусной кислоты. Полученный очищенный поликарбонат образует растворы в метиленхлориде без следов мутности.

В качестве реагентов для удаления бисфенолов и низкомолекулярных фракций из поликарбоната часто используют ацетон, метилэтилкетон и другие кетоны с т. кип. до 140 °С (предпочтительно до 100 °С) при атмосферном давлении [4].

В процессе очистки гранулы или порошок поликарбоната смешивают с агентами и полученную смесь нагревают с обратным холодильником в течение 1—6 ч до полного растворения нежелательных примесей. Затем поликарбонат отделяют и сушат как обычно. Иногда такая обработка кетоном производится несколько раз; после экстракции примесей в поликарбонате остается менее 0,01% всех фенольных компонентов.

Стабильность окраски (бесцветность) поликарбонатов зависит от наличия в них пигментирующих примесей. Установлено, что нестойкость окраски поликарбонатов объясняется наличием в них металлов, особенно никеля в виде свободного металла и (или) солей и окислов.

Для снижения содержания металлических примесей в поликарбонате [до (2—6)-10~6 вес. %] рекомендуется получать поликарбонат в реакторе, облицованном стеклом [5]. Однако это не всегда желательно вследствие растрескивания стеклянной футеровки в процессе эксплуатации, что приводит к

страница 21
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

Скачать книгу "Поликарбонаты" (2.02Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
mizuno crusader 9
панели для кинотеатров
набор для барбекю konig
купить садовую скамейку дешево

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(06.12.2016)