химический каталог




Высокомолекулярные соединения

Автор A.M.Шур

15] производят путем полимеризации хлоропрена или смесей его со стиролом, изопреном, акрило-нитрилом или другими мономерами. Из этих полимеров получают изделия, от которых требуется высокая стойкость к маслам, нагреву, истиранию, негорючесть, прочность, газонепроницаемость и

Заказ 7S

289

стойкость к озону, кислороду, свету, кислотам и щелочам. Клей на основе этих каучуков обладает рядом существенных преимуществ перед клеем, изготовленным из натурального каучука. Фторопреновые каучуки более морозостойки, чем хлоропреновые.

Эмульсионные сополимеры диенов с 1—3% метакриловой кислоты (карбоксилатные каучуки) благодаря наличию групп —СООН могут быть вулканизованы с помощью окислов или гидроокисей металлов. Они обладают хорошей адгезией к тканям и другим материалам. Латексы на их основе используются для пропитки шинного корда и в производстве заменителей кожи.

Для производства электроизоляционных, антикоррозийных и ^герметизующих материалов [16] (герметики), клеев, формовочных масс, настилов для полов, а также в качестве связующих при изготовлении твердого ракетного топлива применяют жидкие каучуки [17], способные превращаться в результате вулканизации в резиноподобные продукты. К ним относятся олигомеры бутадиена, его соолигомеры с акрилонитрилом, акриловыми кислотами и винилпиридинами, непредельные эпоксиды, олигоуретаны, сравнительно низкомолекулярные полисульфиды (тиоколы) вида HS—[—RSn—]х — SH, некоторые кремнийорганические полимеры и т. д. Введение концевых функциональных групп (эпоксидных, ОН, СООН, SH и др.) с соответствующим мономером или путем химической обработки олигомера (например, эпоксидиро-ванием кратных связей) упрощает процесс вулканизации и позволяет осуществлять его полифункциональными низкомолекулярными соединениями с помощью обычной олигомерной технологии (см, с. 265). Полученные вулканизаты отличаются повышенными прочностью и эластичностью. Жидкие каучуки с эпоксидными, группами являются эффективными нелетучими стабилизаторами хлорсодержащих полимеров.

Синтетические латексы диенов и их сополимеров можно применять непосредственно без предварительного выделения полимера для производства перчаток и аналогичных изделий методом макания, для пропитки различных наполнителей (получение прорезиненных тканей, водостойкой бумаги, обувных картонов) и изготовления микропористых материалов (подошва, губки, мягкие пеноматериалы).

Близко к карбоксилатным каучукам стоят так называемые иономеры [18], представляющие собой сополимеры этилена или других а-олефинов с непредельными карбоновыми кислотами (акриловая, метакриловая, малеиновая и др.).

Некоторые иономеры внешне напоминают вулканизованные эластомеры, совмещая властичность с высокими маслостойкостью, прочностью и диэлектрическими показателями. Вместе с тем, будучи термопластичными материалами, они легко перерабатываются экструзией. Такой необычный комплекс свойств связан с малой склонностью сополимеров к кристаллизации и наличием прочных межмолекулярных ионных или водородных связей, которые становятся лабильными при повышенных температурах.

Варьируя соотношение олефина и кислоты и вводя в сополимер ионы меди, лития и др., можно менять в широких пределах жесткость и другие механические свойства полимерного ''материала.

Поливинилхлорид и поливинилиденхлорид [19]. В технике полимеризация вииилхлорида обычно проводится в суспензии или эмульсии под давлением 4—12 атм при 30—70°С в автоклавах или непрерывным методом в башнях. Инициаторами служат различные перекиси. Суспензионный метод, который в настоящее время обеспечивает до 80% мирового производства поливинилхлорида, дает малоразветвленный полимер со сравнительно узким молекулярномассовым распределением и весьма незначительным содержанием примесей. Полученный эмульсионным методом синтетический латекс можно подвергать коагуляции (при этом полимер выделяется в виде тонкодисперсного белого порошка с пл. 1,4 г/см3) или непосредственно использовать его для пропитки и поверхностной отделки ткани, кожи или бумаги, а также для производства латексных красок, не требующих специальных растворителей.

Полимер имеет в основном структуру «голова к хвосту» и аморфен:

'-CHg—СН—СН2—СН—СН2—СН—СН2—СН~

I I I I

С1 С1 С1 С1

По данным рентгеноструктурного анализа, период идентичности

о

растянутого полимера составляет 5,2 А, что соответствует двум мономерным остаткам, лежащим в разных плоскостях.

При температурах выше 140°С поливинилхлорид заметно разлагается с выделением НС1, который катализирует дальнейшее разложение (потемнение полимера); такое же действие оказывают соли железа и цинка и в меньшей мере соли меди. Наличие в макромолекуле групп с подвижным хлором, возникших в результате разветвления цепи (хлор при третичном атоме углерода) или частичного дегалогенирования (—СН = СНСНС1—), снижает термостабильность полимера. Для повышения ее, так как температура переработки поливинилхлорида в изделия близка к температуре разложения, в полимер вводятся стабилизаторы — вещ

страница 116
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

Скачать книгу "Высокомолекулярные соединения" (7.26Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
атлет neo electro отзывы
посуда на 12 персон купить
веломагазин в лефортово
изготовление щитов паспорт объекта строительства

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(07.12.2016)