химический каталог




Аналитическая химия сурьмы

Автор А.А.Немодрук

й способности. Так, например, бриллиантовый зеленый и кристаллический фиолетовый, принадлежащие к классу трифенилметановых красителей, по своей структуре и рефрактометрическим радиусам отличаются незначительно (3,64 и 3,60 А соответственно), в то же время экстракционная способность бриллиантового зеленого намного выше [327]. Общая основность красителей также не определяет их экстракционные свойства. Что касается трифенилметановых красителей, то их способность экстрагировать Sb хорошо объясняется предложенным рядом авторов [430—433, 435, 436, 438—441] механизмом ассоциации и экстракции, согласно которому образование ассоциата происходит по участку катиона красителя с наибольшей плотностью положительного заряда. Данные работы [327] подтверждают этот вывод; величина зарядов на граничных группах, несущих максимальный положительный заряд, возрастает в ряду: кристаллический фиолетовый < малахитовый зе44

45

леный < бриллиантовый зеленый, и в этом же ряду растет их способность экстрагировать Sb.

Многие основные красители, в том числе и трифенилметановые, способны к агрегации, степень которой зависит от их концентрации [31, 203, 358, 415]. На агрегацию красителей оказывают существенное влияние строение самого красителя, природа растворителя и температура [413, 414]. Наиболее сильно красители агрегируются в водных растворах; с уменьшением диэлектрической проницаемости растворителя агрегация ослабевает, и для спиртовых растворов она уже мало характерна [31, 32 , 203, 358, 413—415].

В оптимальных условиях экстракции Sb(V) с применением кристаллического фиолетового (при его исходной концентрации в водной фазе 1,66-Ю-4 М) краситель, находящийся в этих условиях в виде двух форм — мономерной (Хщах = 591 нм) и димер-ной (ЯШах = 540 нм), образует с SbCle ионный ассоциат, бензольные экстракты которого также характеризуются двумя максимумами поглощения — при 610 и 550 нм [327]. Некоторое смещение максимумов поглощения объясняется явлением сольватохромии [361]. Однако при извлечении ионного ассоциата растворителями с более высокой диэлектрической проницаемостью, чем у бензола (хлорбензол, хлороформ, дихлорэтан и т. п.), и смесями бензола с высокополярными растворителями в спектрах экстрактов наблюдается только один максимум, принадлежащий мономерной форме красителя, т. е. наблюдается явление, обратное установленному для самих красителей. Таким образом ведут себя и другие красители, в том числе метиловый фиолетовый, бриллиантовый зеленый, малахитовый зеленый. Получение экстрактов с одним максимумом существенно увеличивает оптическую плотность экстракта. Таким образом, добавление к бензолу нитробензола, дихлорэтана и других высокополярных растворителей или использование только этих растворителей приводит к дезагрегации красителей, входящих в состав ионных ассоциатов. Растворители с диэлектрической постоянной 10 (нитробензол, спирты, нитрилы, альдегиды и т. п.) в качестве экстрагентов для экстракцион-но-фотометрического определения Sb(V) непригодны, так как сильно извлекают солянокислые соли самих красителей. Для экстракции ионных ассоциатов, образуемых SbGe с катионами трифенилметановых красителей, рекомендуется применять растворители с диэлектрической проницаемостью в пределах 4,8— 10,0 [327]. Эти растворители (хлорбензол, смеси бензола с нитробензолом или с дихлорэтаном) экстрагируют Sb(V) полнее, и получаемые экстракты характеризуются значительно большими молярными коэффициентами погашения. Добавление к бензолу цик-логексанона и других кетонов, наоборот, уменьшает оптическую плотность экстрактов. Это объясняется тем, что кетоны хорошо извлекают Sb в виде HSbCle, присоединяясь к ней с образованием соответствующих неокрашенных сольватов [393].

46

Перед определением Sb ее необходимо полностью перевести в Sb(V). Однако поскольку растворы иногда содержат Sb(IV), которая очень медленно окисляется до Sb(V), то в этих случаях вначале всю Sb восстанавливают до Sb(III) сульфитом натрия, а избыток S02 удаляют кипячением и затем окисляют Sb(III) до Sb(V). Иногда в качестве восстановителя применяют SnCla [393], что менее удобно. В качестве окислителей наиболее часто используют Ce(S04)2 или NaN02. Окисление Sb(III) сульфатом Ce(IV) проводят на холоду в среде ~6 М HGI. Избыток Ce(IV) восстанавливают добавлением NH2OH-HCl, который не восстанавливает Sb(V). Гидроксиламин восстанавливает также хлор, образующийся при взаимодействии Ce(IV) с НС1. При использовании NaN02 для окисления Sb(III) избыток его устраняют добавлением мочевины [1125]. Экстракцию обычно проводят при комнатной температуре. Предварительное охлаждение до 0° С несколько повышает эффективность экстракции [1067].

Для маскирования ионов, мешающих экстракционно-фотомет-рическому определению Sb, весьма эффективным оказался гекса-метафосфат натрия, образующий прочные комплексы со многими ионами металлов и не взаимодействующий с Sb(V). Его применение позволяет определять Sb в различных материалах без ее предварительного отделения. Таким образом определяют Sb в сталях [13

страница 21
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

Скачать книгу "Аналитическая химия сурьмы" (1.8Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
участок новая рига авито
бортовые кузовные наклейки для такси в орле
металлический шкаф шр-22
Silampos официальный сайт

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(27.04.2017)