химический каталог




Избранные методы синтеза органических соединений

Автор И.Б.Репинская, М.С.Шварцберг

0

н

Et I

PhCMe I

70 %

сн3сосн3

Ва(ОН)2

OMgBr ОН

(СН3)2ССН2СОСН3 68-74 %

NH.CONHMe ^ NH2CON-NO 80 %

h2so4, -10 °c I

Me

Методы восстановления обычно разделяют на две группы: восстановление молекулярным водородом в присутствии катализаторов - гидрирование и восстановление прочими неорганическими и органическими реагентами - „химическое" восстановление. Методы второй группы весьма разнообразны и различаются между собой природой восстановителя, экспериментальными условиями и механизмом реакций, областью применения. Каталитическое гидрирование, напротив, представляет, по существу, единый синтетический метод, базирующийся на применении простейшего и универсального восстановителя, ограниченного круга катализаторов и отличающийся значительной общностью техники эксперимента при широком диапазоне изменений отдельных параметров химического процесса.

1.2. ГИДРИРОВАНИЕ КАК МЕТОД ВОССТАНОВЛЕНИЯ

Гидрирование используется для решения синтетических и, реже, аналитических задач и реализуется в микро-, полумикро-, стандартном препаративном и промышленном масштабах. Присоединяя этим методом водород по кратным связям, можно исчерпывающе или частично восстанавливать различные углеродные и гетероатомные ненасыщенные фрагменты молекулы, такие как ацетиленовая и этиленовая связи, карбонильная и нитрильная группы, ароматическое и гетероароматическое ядра и др., и тем самым заменять одни функциональные группы другими или удалять ненасыщенные реакционные центры. Во многих случаях в условиях

гидрирования протекает гидрогенолиз, т. е. полный разрыв связи между атомами реакционного центра, например С-О, C-S, C-N, С-С1, С-С, N-N ит. д., с присоединением водорода по месту расщепления.

Гидрогенолиз связи С-С1 лежит в основе одного из способов получения альдегидов - реакции Розенмунда:

СОС1 „ ^ л .сно

н2

Pd— BaS04, хинолин-S,

Me2C6H4, 150 °С, 1 атм 74-81%

Применение палладиевого катализатора (Pd-BaSC>4, Pd-C), обычно частично дезактивированного небольшим количеством сернистого соединения, и мягкие условия гидрирования позволяют практически избежать дальнейшего восстановления образующегося альдегида.

Способность связи С-галоген к гидрогенолизу используется при удалении атомов галогена из ароматических циклов. Так, 4,5-дииодо-1 -метил- и 2,4,5-трииодо-1-метилимидазол легко восстанавливаются в 4-иод-1-метилимидазол рассчитанным количеством водорода при атмосферном давлении и температуре 20 °С на скелетном никелевом катализаторе в присутствии основания:

N 1

Me

63-69 %

Направленно получить тот же моноиодид прямым иодированием 1 -метилимидазола не удается, так как скорости вступления первого, второго и третьего атомов иода в гетероцикл близки между собой.

. Легко подвергаются гидрогенолизу связи С-гетероатом (0,N) в бензильном положении. Этим определяется возможность применения бензильной и родственных групп как защитных при синтезе полифункциональных соединений. Снятие такой защиты достигается гидрированием соединения на палладиевом катализаторе при температуре 20 °С и атмосферном давлении:

Me

О

HN'

NCH2Ph

н.

Pd-C

NHMe

О

Me

трет - Bu-SiО ~\^^ Me

CH2OCH2Ph

Me

трет - Bu -SiO -<

Me 1^ "

CH2OH

96%

Гидрирование как аналитический метод сыграло заметную роль в истории химии при установлении строения непредельных органических соединений. В настоящее время оно иногда используется для количественного определения степени ненасыщенности веществ, особенно смесей (например жиров), непредельных карбо-новых кислот, ацетиленовых соединений и др. Степень ненасыщенности при этом обычно характеризуется так называемым числом гидрирования - массой водорода в граммах, необходимой для гидрирования 10 кг вещества.

Особенность гидрирования как синтетического метода заключается в применении для восстановления веществ разных классов одного и того же восстановителя и общих или химически родственных катализаторов. Эта особенность ограничивает возможность избирательного гидрирования соединений, если необходимо, например, обеспечить заданную глубину восстановления группы, способной к более глубокому восстановлению, или прогидрировать одну из нескольких восстанавливающихся групп, не затрагивая остальных. Тем не менее возникающие затруднения во многих случаях успешно преодолеваются подбором катализатора и условий реакции:

Me \

Ме-СС = СН /

НО

н.

Pd-CaC03, Pb(OAc)2, хинолин, петролейный эфир, 10 °С, 1 атм

Me

\

Ме-ССН: /

НО

СН0 94%

Гидрирование при атмосферном давлении термодинамически разрешено при относительно невысоких температурах. Ниже 100 °С присоединение водорода по кратным связям необратимо и является сильно экзотермической реакцией. С повышением температуры начинает играть роль процесс дегидрирования насыщенных групп, и, таким образом, гидрирование становится обратимым. При высоких температурах преобладает обратная реакция дегидрирования. Так, алкины и алкены могут гидрироваться в алканы, а бензол в циклогексан при умеренных температурах и атм

страница 4
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

Скачать книгу "Избранные методы синтеза органических соединений" (1.39Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
профнастил вологда цены на преображенского
дачные участки по новорижскому шоссе
Газовые котлы Kiturami KSOG 70R HI FIN
купить шашку

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(05.12.2016)