химический каталог




Основы структурного анализа химических соединений

Автор М.А.Порай-Кошиц

турном анализе. Фактически он используется в основном для решения одной из побочных (предварительных) задач рентгеноструктурного анализа — для определения ориентации кристаллографических осей в исследуемом монокристалле. Такая задача возникает, во-первых, в тех случаях, когда исследуется обломок кристалла, не имеющий правильного габитуса, и, во-вторых, в тех случаях, когда для повышения прецизионности исследования кристаллу путем обкатки придается сферическая форма (см. гл. IV, § 1 и гл.У, § 4). Именно неподвижное положение исследуемого образца в камере Лауэ и делает полихроматический метод незаменимым для решения этой задачи. Ориентация кристаллографических осей находится по определенным правилам на основе расположения дифракционных пятен на пленке**.

* Для решения некоторых специальных задач плоскую кассету с пленкой ставят на пути первичного пучка до кристалла (естественно, предполагается центральное отверстие в кассете для пропускания первичного пучка). Рентгенограммы, полученные таким способом, обычно называют эпиграммами.

** См.: Бокий Г. Б., Порай-Кошиц М. А. Рентгеноструктурный анализ. Т. I. Изд-во МГУ, 1964. С. 392—412.

В принципе метод Лауэ можно использовать также для решения одной из промежуточных задач структурного исследования — установления точечной группы симметрии кристалла, или, точнее, его класса Лауэ (с учетом закона центросимметричности рентгеновской оптики— см. ниже). Для этого требуется повернуть кристалл так, чтобы с первичным пучком совпал предполагаемый элемент симметрии — ось симметрии и (или) плоскость симметрии. Тогда симметрия в расположении пятен на рентгенограмме отразит именно эти элементы симметрии. Из нескольких лауэграмм, снятых при разной ориентации кристалла, можно полностью выявить класс Лауэ. Однако такая переориентация кристалла требует трудоемкой работы по его переклейке с одного держателя на другой и доводке ориентации до точного совпадения нужного кристаллографического направления с первичным пучком. Поэтому в современном (ди-фрактометрическом) структурном анализе эту стадию исследования обычно опускают и сразу переходят к определению пространственной группы симметрии (см. ниже).

Метод вращения. Этот метод является основным инструментом рентгеноструктурного анализа кристаллов. Главное его преимущество заключается в относительной легкости определения параметров решетки и индициро-вания рентгенограмм (или, альтернативно,— установки кристалла и счетчика в отражающие положения в случае дифрактометрической регистрации лучей). Существенно, конечно, и то обстоятельство, что все дифракционные лучи имеют одну и ту же длину волны, что позволяет воспользоваться наиболее интенсивной К*-линией линейчатого спектра. Основной недостаток метода— необходимость монокристаллического образца исследуемого вещества. К сожалению, этот недостаток непреодолим, и весь современный структурный анализ — определение атомного расположения в элементарной ячейке и решение других, более тонких задач строения (см. гл. V, § 4)—основан на исследовании монокристаллов. Поэтому, в частности, получение достаточно крупных кристаллов в процессе синтеза (кристаллов миллиметрового размера) становится одной из насущных задач химического синтеза.

В течение длительного периода для рентгенострук-турных исследований использовались главным образом рентгеногониометрические схемы метода вращения (с фотографической регистрацией лучей). В настоящее время главным инструментом РСА является монокристальный дифрактометр.

§ 8. Фотографическая и дифрактометрическая аппаратура рентгеноструктурного анализа

монокристаллов

Фотографические монокристальные приборы конструктивно значительно проще, чем дифрактометрические. Однако оценка интенсивности рефлексов на рентгенограммах представляет собой довольно трудоемкую процедуру, а точность оценки относительно невысока.

С другой стороны, в дифрактометрах можно достичь очень высокой точности измерения интенсивности, но сам прибор значительно сложнее как по кинематической схеме (к поворотам держателя кристалла добавляется вращение кронштейна со счетчиком), так и по электронному устройству. Обслуживание дифрактометра требует высокой технической квалификации.

Рис. 33. Схема рентгеновских камер в методе вращающегося кристалла:

а — камера' вращения; б — рентгенгониометр Вейсенберга; в — связь между координатами пятиа и углами т и о>; 1 — кассета; 2 — экранирующий цилиндр

Фотографическая аппаратура. Простейшая схема прибора для получения рентгенограмм по методу вращения (камера вращения) показана на рис. 33, а. Первичный пучок, вырезанный коллиматором, падает на кристалл перпендикулярно оси его вращения. Будем считать, что с осью вращения совмещена кристаллографическая ось X кристалла. Угол /i в первом условии Лауэ остается при вращении неизменным и равен 90°. Поэтому и углы ные лучи, возникающие в процессе из

страница 22
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

Скачать книгу "Основы структурного анализа химических соединений" (1.73Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
мяч баскетбольный spalding tf-1000 legacy euroleague official ball
новогодние канцтовары для детей
музыкальное оборудование в аренду
шашлычный набор купить в москве

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(06.12.2016)