химический каталог




Процессы и аппараты химической технологии

Автор А.Н.Плановский, В.М.Рамм, С.З.Каган

, усовершенствованную конструкцию простых лопастных мешалок. Вращение нескольких лопастей, расположенных под углом к вертикальной плоскости, создает наряду с радиальными потоками осевые потоки жидкости, что способствует интенсивному перемешиванию ее в больших объемах. Интенсивность перемешивания возрастает при установке в сосуде отражательных перегородок.

Закрытые турбинные мешалки обычно устанавливают внутри направляющего аппарата, который представляет собой неподвижное кольцо с лопатками, изо-гнутыми под углом 45—90° (рис. 10-9,б). Закрытые турбинные мешалки создают преимущественно радиальные потоки жидкости при небольшой затрате кинетической энергии. Образующиеся радиальные потоки жидкости обладают достаточно большой скоростью и распространяются по всему сечению аппарата, достигая наиболее удаленных его точек. Жидкость входит в мешалку через центральное отверстие и выходит по касательной к колесу. В колесе жидкость плавно меняет направление от вертикального (по оси) до горизонтального (по радиусу) и выбрасывается из колеса с большой скоростью. При таком направленном и многократно повторяющемся в единицу времени движении жидкости достигается быстрое и эффективное перемешивание ее во всем объеме сосуда (рис. 10-10). Для улучшения и ускорения перемешивания (что особенно важно в аппаратах непрерывного действия) применяют турбинные мешалки с лопастями или колесами, расположенными на различной высоте.

Достоинства турбинных мешалок: 1) быстрота перемешивания и растворения, 2) эффективное перемешивание вязких жидкостей, 3) пригодность для непрерывных процессов.

Недостатком турбинных мешалок является сравнительная сложность и высока» стоимость изготовления. Области применения турбинных мешалок: 1) интенсивное перемешивание и смешивание жидкостей различной вязкости, которая может изменяться в широких пределах

(мешалки открытого типа до 105 спз, мешалки закрытого типа до 5 • 105 спз);

2) тонкое диспергирование и быстрое растворение;

3) взмучивание осадков в жидкостях, содержащих 60% и более твердой фазы (для открытых мешалок — до 60%); допустимые размеры твердых частиц: до 1,5 мм

для открытых мешалок, до 25 мм для закрытых мешалок. I—I—

Нормализованные турбинные мешалки выпускают с диаметром турбины 300, 400, 500 и 600 мм.

Специальные мешалки

Для перемешивания вязких жидкостей и пастообразных материалов применяют так называемые якорные мешалки с лопастями, изогнутыми по форме стенок и днища сосуда (рис. 10 11). Якорные мешалки очищают стенки аппаратов от налипающего на них материала, благодаря чему улучшается теплообмен и предотвращаются местные перегревы перемешиваемых веществ

Барабанная мешалка (рис. 10-12) представляет собой лопастной барабан в виде так называемого

Рис. 10-11. Якорные мешалки. Рис. 10-12. Бар'абанная

мешалка.

беличьего колеса. Мешалки этой конструкции создают большую подъемную силу и потому весьма эффективны при проведении реакций между газом и жидкостью, а также при получении эмульсий, обработке быстро расслаивающихся суспензий и взмучивании тяжелых осадков. Рекомендуемые условия применения барабанных мешалок: отношение диаметра барабана к диаметру сосуда от 1 : 4 до 1:6, отношение высоты жидкости к диаметру барабана не менее 10.

5. Перемешивание сжатым воздухом

Перемешивание маловязких жидкостей иногда производят сжатым воздухом. Таким способом возможно лишь медленное перемешивание при сравнительно большом расходе энергии; кроме того, как указывалось, перемешивание воздухом может сопровождаться нежелательным окислением или испарением продуктов.

Обычно перемешивание сжатым воздухом проводят в аппаратах, снабженных барботером — трубой с отверстиями для выхода воздуха, или в аппаратах, работающих по принципу воздушных подъемников (эрлифтов). В последнем случае жидкость, смешанная с пузырьками воздуха, поднимается по центральной трубе, расположенной по оси аппарата, и опускается в кольцевом пространстве между трубой и стенками аппарата. Таким образом жидкость циркулирует в аппарате и перемешивается в нем.

При расчете пневматических перемешивающих устройств определяют необходимое давление и расход воздуха.

Давление воздуха находят по формулеР = H9xg + i^- (1 + Щ+Ро н/м2 (10-10)

где Н—высота столба перемешиваемой жидкости, м, Рж и Рв — плотность перемешиваемой жидкости и воздуха, кг/м3, w — скорость воздуха в трубе (обычно w = 20—40 м/сек), 2 С — сумма коэффициентов трения и местных сопротивлений, Ро— давление над жидкостью в аппарате, н/м2

При грубо ориентировочных расчетах, если длина воздушных трубопро водов неизвестна, можно принимать потери в трубах равными "^20% от сопротивления столба жидкости Нрк, т е вести расчет по формуле

Я=1,2//рж? + />0 н/м2 (10-11)

Расход воздуха V на перемешивание (в пересчете на атмосферное давление) может быть определен по эмпирической формуле

V = kFP м3\я (10-12)

где F — поверхность спокойной жидкости в аппарате до перемешивания, м2, Р — давление воздуха, н/м2;

k — опытный коэффициент, равный 2,4—6,0 в зависимос

страница 119
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

Скачать книгу "Процессы и аппараты химической технологии" (11.4Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
обучение по пусконаладочным работам котла e-50
купить контактные линзы -12
Наборы столовых приборов Sambonet
курсы ногтевого сервиса дмитров

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(04.12.2016)