химический каталог




Физическая химия

Автор Б.П.Никольский, Н.А.Смирнова, М.Ю.Панов, Н.В.Лутугина и др.

адии кристаллизации. При работе с металлическими электродами и в кинетических, и в потенциометрических опытах

часто возникают осложнения, связанные с трудностью получения воспроизводимой по свойствам поверхности. Поэтому прибегают к обновлению поверхности металла, обычно с помощью электролиза из подходящего электролита.

Чем более активен металл, тем больше вероятность протекания на нем двух побочных процессов: катодного восстановления кислорода и выделения водорода. Как это отмечалось в связи с цинковым электродом, переход к амальгамам существенно расширяет возможность получения обратимых электродов 1-го рода. Здесь, однако, приходится иметь в виду, в первую очередь для амальгам щелочных металлов, что побочные процессы все же идут, хотя и с малой скоростью: электроды растворяются и состав раствора меняется.

Электроды 2-го рода, например, хлорсеребряный, могут быть изготовлены по-разному. В разд. IX. 6.4 речь шла о серебряной проволоке, погруженной в насыщенный раствор хлорида серебра. В другом способе изготовления этого электрода на серебряную проволоку в определенном режиме электролитически наносится осадок хлорида серебра, не имеющий сквозных пор и потому изолирующий серебро от непосредственного контакта с раствором. Полученное термодинамически уравнение (IX. 61) справедливо, независимо от способа изготовления хлорсеребря-ного электрода, но для электрода с электролитическим осадком хлорида серебра примеси в растворе меньше искажают обратимость, поэтому динамические характеристики лучше. Большое значение при этом приобретает характер проводимости соли, нанесенной на поверхность металла.

Беспористые гальванические осадки с высоким уровнем ионной проводимости (ионов серебра для галогенсеребряных электродов) по механизму электродного процесса перестают отличаться от соответствующих мембранных систем (см. разд. IX. 8.2). В этой связи интересно отметить, что, несмотря на низкие значения стандартных потенциалов галогенсеребряных электродов 0,222В—для AgCl|Ag; 0,071В —для AgBr| Ag — 0,152 В для AgI|Ag, влияния побочного процесса восстановления кислорода ^и некоторых других окислителей) для этих электродов учитывать не нужно.

Для оценки границ применения обратимых оксред-электро-дов важными являются следующие положения.

I. В соответствии с выводом уравнения (IX. 46) для всех инертных материалов с электронным характером проводимости (платина, золото, графит и т. д.) в растворах оксред-систем должен устанавливаться один и тот же равновесный потенциал. Действительно, имеется группа систем, для которых выбор инертного материала не имеет решающего значения. Различия в свойствах электродных материалов проявляются лишь по отношению к конкурирующему влиянию примесей и, следовательно, на нижнем уровне концентраций оксред-компонентов. Этот уровень, в соответствии с ранее сделанными для кислородного электрода оценками, составляет в растворах без специальной очистки Ю-5—10~6 М.

Но существует и другая большая группа оксред-систем, для которых расхождение в потенциалах разных инертных материалов достигает сотен милливольт. Их отличительная черта — низкая скорость реакций электронного обмена и в растворах, и на электродах; в качестве примера уже назывались системы

021 Н20, МпС>41 Мп2+. В последних для реализации обратимого-электродного процесса необходимо, чтобы металл выполнял функции катализатора электронного обмена. Благодаря особенностям электронной структуры, способности адсорбировать многие вещества платина в качестве катализатора выделяется среди металлов. С ее помощью удалось создать много обратимых оксред-электродов. Но не во всех случаях каталитическая активность этого металла оказывается достаточной, в этом мы убедились на примере кислородного электрода.

II. Получение обратимых оксред-электродов, анализ их действия в раМках выполнимости уравнений (IX. 46) и (IX. 48), как уже неоднократно отмечалось, предполагает достижение равновесного состояния в растворе и на электроде. Но для многих" реакций взаимодействие между компонентами разных оксред-систем происходит медленно и в приемлемые промежутки времени равновесия не достигаются. Характерным и очень важным примером являются реакции с молекулярным кислородом. Если произвести расчеты равновесных концентраций в соответствии со стандартными потенциалами систем так, как это сделано в разд. IX. 5, то окажется, что ни Вг~, ни I-, ни Fe2+ и гидрохинон не могут присутствовать в контакте с кислородом воздуха.

На самом деле из-за кинетического торможения реакций окисления молекулярным кислородом растворы, содержащие названные ионы, остаются стабильными на воздухе и даже используются в аналитической практике. На платиновом электроде без специальной защиты растворов достигаются равновесные потенциалы в системах Вг2|Вг~, Ь|1~, Fe3+|Fe2+, хинон-ги-дрохинон. Эти потенциалы характеризуют частные равновесия оксред-компонентов каждой из систем с электродом, но не отражают в термодинамическом отношении окислительно-восстановительное состояние раствора. Малая скорость электродного процесса для кислородного электрода на платине, которая является препятствием достижения обратимости этого электрода,, в случае других оксред-систем является положительным фактором, необходимым условием функционирования соответствующих электродов.

Если бы ток обмена на платине в системе кислородного электрода оказался равным 10~7—1(Н А-см~2, т. е. на 2—3 порядка выше, чем на самом деле, обратимость электродного процесса для многих оксред-электродов была возможна только в ячейках, защищенных от попадания в них кислорода. Но и тот малый ток обмена, который характерен для кислородного электрода на платине, в ряде случаев оказывается все же достаточным для нарушения обратимости процесса.

Особенно это относится к измерениям в системе с низкими значениями стандартных окислительных потенциалов, где в соответствии с рис. IX. 13 скорость восстановления 02 оказывается уже большой (Ен <с 600 мВ).

Ситуация, складывающаяся в растворе и на электроде, когда равновесие между компонентами оксред-систем не достигается, относится не только к реакциям взаимодействия с кислородом. Имеется много других примеров, когда для реализации частных равновесий между электродом и компонентами определенной оксред-системы большое внимание следует уделять выбору инертного материала электрода. В частности, установлено, что электронопроводящие стекла, стеклообразный углерод оказываются в некоторых измерениях предпочтительней платины, благодаря своей низкой каталитической активности в реакциях электронного обмена.

Кинетика мембранных электродов пока мало изучена. К этому есть объективные причины: мембранные электроды имеют значительные омические сопротивления; например, для стеклянных электродов они достигают 108—109 Ом. На этом фоне выделить поляризационное сопротивление на границе электрод — раствор чрезвычайно трудно. Однако имеются данные в пользу того, что скорость ионообменных реакций в большинстве случаев большая, она не должна быть лимитирующим фактором при установлении равнов

страница 162
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

Скачать книгу "Физическая химия" (6.95Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
обучение проектированию отопления
Рекомендуем приобрести офисную технику в КНС купить новый ноутбук недорого с доставкой по Москве и по 100 городам России.
стильные кухонные столы
аренда автобуса цены

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(26.06.2017)