![]() |
|
|
Основы общей химии. Том 1ам имеется избыток одного вз ионов, входящих в их собственный состав, такие ионы по преимуществу и адсорбируются, сообщая частицам свой заряд. Если, например, получать гидрозоль Agl по реакции обменного разложения между AgN03 и КЛ, то при избытке AgNOa из различных имеющихся в растворе ионов (Ag', NOg, К*) на коллоидных с этим Agl является в первом случае положительным коллоидом, во втором — отрицательным. Следует отметить, что I' адсорбируется частицами Agl значительно лучше, чем Ag4. Поэтому при равной концентрации в растворе обоих ионов Agl является отрицательным коллоидом. 16) Кроме адсорбции иоиов, могут, вообще говоря, иметь место и другие причины, обусловливающие возникновение заряда коллоидных частиц. Так, в некоторых случаях возможна их собственная электролитическая диссоциация с отщеплением большего или меньшего числа иоиов определенного заряда, причем сама коллоидная частица, играющая в данном случае роль иона-гиганта, приобретает противоположный заряд. Подобный характер возникновения последнего вероятен, например, для многих органических красителей. 17) Причиной возникновения заряда может быть также контактная электризация, наблюдаемая обычно на границе раздела двух тесно соприкасающихся фаз и обусловленная переходом в пограничном слое части электронов от одной из них к другой. В результате фаза с меньшей величиной диэлектрической проницаемости заряжается отрицательно, с большей — положительно. Например, поверхность стекла при контакте с водой заряжается отрицательно. Многие коллоиды, имеющие в воде (е = 81) отрицательный заряд, в характеризующихся малыми величинами диэлектрической проницаемости органических растворителях становятся заряженными положительно. Аналогичная электризация имеет место также при трении друг о друга различных твердых веществ (например, стекла о шерсть). Она создает порой серьезные трудности при проведении некоторых промышленных процессов. 18) С электризацией трением связано, в частности, возникновение молнии. При падении вниз крупных дождевых капель они вследствие сопротивления воздуха сплющиваются, а затем разбиваются на более мелкие капли и удерживаемую воздухом мельчайшую водяную пыль. Последняя приобретает при этом отрицательный заряд, а капли — положительный. В результате дальнейшего падения капель между верхними и нижними слоями туч (а также между последними и землей) создается разность потенциалов, достигающая в конце концов таких размеров (порядка тысяч в/см), что происходит электрический разряд. Подобная же электризация трением может служить причиной самовозгорания нефтяных фонтанов. Молния имеет громадную мощность, но каждый ее разряд происходит за столь короткое время (порядка десятитысячных долей секунды), что переносимое количество электричества невелико. Видимый разряд молнии обычно слагается из 5—6 отдельных разрядов с очень малыми паузами между пимн и имеет общую продолжительность порядка 1,5 сек. Длина молнии нередко достигает нескольких километров, а диаметр ее канала колеблется от долей сантиметра до 20 см. В нем господствует высокое давление, мгновенно спадающее при разряде, что и вызывает гром. Звуковой спектр грома довольно сложен, но наибольшая его энергия обычно сосредоточена в диапазоне частот 0,25 -"- 2 гц (инфразвуки) и 125 -"- 250 гц. 19) Изучая скорость передвижения коллоидных частиц при электрофорезе, можно оценить величину их заряда. Получаемые как по этому, так и по другим методам значения приводят в общем к согласным результатам, указывающим прежде всего иа то, что заряд большинства коллоидных частиц значительно больше, чем у отдельных ионов. С увеличением размеров частиц возрастает обычно и нх заряд: если при диаметре частицы в 1 ммк ои отвечает 2—3 единицам элементарного количества электричества (равного заряду электрона), то для частиц с диаметром 100 ммк заряд увеличивается до сотеи и тысяч таких единиц. При всей громадности этой величины, по сравнению с числом образующих коллоидную частицу атомов или молекул она все же очень мала. Поэтому при электрофорезе переносится гораздо больше вещества, чем то отвечало бы закону электролиза. 20) К электрофорезу близок по своей природе электроосмос. Сущность его заключается в происходящем под действием постоянного электрического тока перемещении жидкости, заключенной в капиллярах или порах твердого тела. Причиной этого явления может быть контактная электризация жидкости, собственная электролитическая диссоциация вещества поверхности или неодинаковая адсорбция ею ионов разного знака, в результате чего жидкость приобретает заряд. Направление перемещения определяется знаком этого заряда и зависит как от состава жидкости, так и от материала твердого тела. Например, вода при контакте со стеклом заряжается положительно и поэтому перемещается к катоду. Электроосмос находит практическое использование в некоторых областях техники. Например, с его помощью может быть значительно ускорен процесс дубления кож. 21) Насколько велики поверхностные силы, видно хотя бы нз опытов по спр |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|