![]() |
|
|
Основы общей химии. Том 1лентный 0,239 кал. Следовательно, одна калория равна 4,187 джоуля, а одна килокалория — 4,187 килоджоуля (кдж). Установление общепринятых атомных весов имело громадное значение для развития химии, так как дало возможность систематизировать и обобщить все накопившиеся сведения о свойствах элементов. Работа в этом направлении была предпринята Д. И. Менделеевым и увенчалась около 1870 г. блестящим успехом. Менделеев исходил из представления, что наиболее существенным свойством атома является его масса, величина которой и должна служить основой для химической систематики элементов. Расположив элементы в порядке возрастания их атомных весов, он обнаружил периодичность изменения химических свойств: оказалось, что для каждого элемента через некоторое число других имеется подобный ему элемент. На основе всестороннего вскрытия этой химической аналогии Менделеев открыл периодический закон и построил периодическую систему, которая в ее современной форме дана на форзаце (развороте переплета). В ней указаны номера элементов по порядку (атомные номера), их химические обозначения, названия и атомные веса. Для большинства элементов, претерпевающих радиоактивный распад, приведены в квадратных скобках массовые числа наиболее устойчивых атомов. Периодическая система элементов дала химикам новый метод установления атомных весов. Первым применил его сам Менделеев, исправив атомные веса ряда элементов. В качестве примера рассмотрим элемент индий. Для него известен был только эквивалентный вес, равный (округленно) 38,3. Атомный вес его, следовательно, мог равняться 38,3; 76,6; 114,9; 153,2 и т. д. Летучих соединений индия известно не было. Если принять, что атомный вес индия равен 38,3, то этот элемент должен стоять в системе после хлора, т. е. на месте калия (№ 19; аргон в то время известен не был). Но индий совершенно не похож по свойствам на находящиеся в том же вертикальном ряду другие элементы; следовательно, это предположение отпадает. Если принять атомный вес равным 76,6 (как тогда и считали), то индий попадает на место селена (№ 34). Однако индий совершенно не похож на другие элементы этого вертикального ряда. Если принять следующий возможный атомный вес 114,9, то индий попадет на место № 49, т. е. окажется в одном вертикальном столбце с алюминием (№ 31—галлий не был известен), с которым он сходен по свойствам. Следовательно, атомный вес индия должен быть равен именно 114,9. Впоследствии этот и все другие атомные веса, указанные Менделеевым, были подтверждены опытом. Благодаря периодическому закону установление атомного веса элемента стало сводиться к возможно более точному определению его эквивалента. Если для отдельных элементов сопоставить величины их атомных и эквивалентных весов, то окажется, что атомный вес либо равен эквивалентному, либо содержит два, три и т. д. эквивалентных веса. Число, показывающее, сколько эквивалентных весов заключается в атомном весе, т. е. частное от деления атомного веса на эквивалентный, называется валентностью рассматриваемого элемента. Так, атомный вес водорода равен эквивалентному, следовательно, водород одновалентный элемент; атомный вес кислорода равен 16, а эквивалентный— 8, следовательно, кислород двухвалентен и т. д. Элемент, имеющий два или более различных эквивалентных веса (например, медь), будет характеризоваться переменной валентностью. Физический смысл понятия «валентность» выясняется следующим образом. Если в атомном весе какого-нибудь элемента, например кислорода, заключаются два эквивалентных веса, то это значит, что один его грамм-атом соответствует в соединениях двум грамм-атомам одновалентного элемента. Иначе говоря, атом кислорода способен соединяться с двумя атомами какого-либо одновалентного элемента (например, водорода). Следовательно, валентность есть число, показывающее со сколькими одновалентными атомами может соединиться атом данного элемента (или сколько таких атомов он может заместить) при образовании молекулы. Валентность часто обозначают соответствующим числом черточек при символе элемента. Понятие о валентности элементов наметилось в 50-х годах прошлого века. Особое значение этого понятия для химии определяется тем, что оно было принято А. М. Бутлеровым за основу разработанной им в 1861 г. теории строения химических соединений, — той теории, которой химия руководствуется и в настоящее время. § 6. Химические формулы и уравнения. Трудно представить себе ту путаницу в химических обозначениях, которая существовала до признания гипотезы Авогадро. Поскольку общепринятых атомных весов не было, каждый химик руководствовался в этом вопросе теми соображениями, которые ему представлялись наиболее правильными. Соображения эти часто менялись в результате тех или иных отдельных опытов, что приводило к изменению и форм выражения состава химических соединений — химических формул. Даже для воды не существовало общепринятого обозначения. В отношении формул более сложных веществ разногласия нередко были так велики, что химики лишь с трудом понимали друг друга |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|