химический каталог




Основы общей химии. Том 1

Автор Б.В.Некрасов

ых результатов, так как газовые законы отображают свойства реальных газов лишь приближенно. Однако при условиях, не очень отличающихся от нормальных, отклонения настолько малы, что для большинства практических целей точность расчетов достаточна.

Дополнения

1) На основе закона Авогадро возможно определение молекулярных весов не только газов, но и тех жидких и твердых при обычных условиях веществ, которые

могут быть без разложения переведены в парообразное состояние. Для определения обычно служит прибор, показанный на рис. 1-10. Во внешний сосуд А наливают какую-либо жидкость, имеющую более высокую точку кипения, чем исследуемое вещество. Нагревая эту жидкость до кипения, создают высокую температуру во всем сосуде А. Точно отвешенное количество исследуемого вещества помещают в тонкостенную стеклянную ампулку Б. При вытягивании наружу стеклянной палочки Д ампулка падает в нагретый сосуд и разбивается. Образующийся при этом пар исследуемого вещества вытесняет в предварительно заполненную водой градуированную трубку Г объем воздуха, равный объему пара вещества. Зная этот объем (приведенный к нормальным условиям) и взятую навеску исследуемого вещества, легко вычислить его плотность пара и молекулярный вес (в парообразном состоянии). Если сосуд Б сделать не из стекла, а из какого-либо тугоплавкого материала и внешний сосуд А заменить электрической печью, то этот способ можно применять при температурах до 1500 °С.

2) Для I мм рт. ст. в качестве единицы давления иногда применяется название тор. При метеорологических наблюдениях давление обычно выражают в миллибарах (мбар), представляющих собой тысячные доли единицы давления бар, практически равной 750 мм рт. ст.

Рекомендуемая с 1963 г. в качестве предпочтительной международная система единиц (СИ) за основную единицу давления принимает t иьютои на 1 квадратный метр, н/мг (единица силы — ньютон — определяется как сила, сообщающая телу с массой 1 кг ускорение 1 м,!сек2). По абсолютной величине 1 н/м2 = 0,01 мбар.

§ 5. Атомные веса. Определения молекулярных весов открыли возможность надежного установления и атомных весов. Иногда последние можно было определить совсем просто. Зная, например, что моле

кулярный вес хлора равен 70,9 и молекула его состоит из двух атомов, сразу находим атомный вес хлора—35,45.

В более общем случае вопрос решали, исходя из эквивалентных весов элемента и молекулярных весов его летучих соединений (Канниццаро, 1850 г.). Например, для углерода было известно два различных эквивалента, а именно 3 и 6. Очевидно, что атомный вес углерода должен или совпадать с наименьшим значением его эквивалентного веса или быть кратным последнему, т. е. мог равняться 3, 6, 9, 12> 18 и т. д.

Спирт Двуокись

vunp углерода

46 44

52,2 27,3

24 12

Выбор истинного числа делался на основании закона Авогадро. Так как в молекуле любого углеродного соединения не может содержаться меньше одного атома углерода, наименьшая доля этого элемента в молекулярном весе и должна соответствовать его атомному весу. Нужно было, следовательно, определить молекулярные веса различных летучих углеродных соединений, вычислить по их процентному составу в каждом случае долю углерода и выбрать из всех полученных чисел наименьшее. Такие определения давали число 12. Поэтому атомный вес углерода и следовало принять равным двенадцати. Ниже в качестве примера приведены расчетные данные для метана, эфира, спирта и двуокиси углерода.

Метан Эфир

Молекулярный вес 16 74

Процентное содержание углерода 75,0 64,9

Доля углерода в молекулярном весе 12 48

Для определения атомных весов элементов, не образующих летучих соединений (главным образом, металлов), можно было использовать найденное опытным путем правило атомных теплое м костей: теплоемкость грамм-атома элемента в твердом состоянии, т. е. произведение атомного веса этого элемента на его удельную теплоемкость, есть при обычных условиях приблизительно постоянная величина — в среднем 6,2 (под удельной теплоемкостью понимается количество тепла, необходимое для нагревания 1 г данного вещества на один градус). Это правило начали применять для установления атомных весов около 1850 г.

Например, для меди были известны два эквивалентных веса — 31,8 и 63,6. Атомный вес меди должен равняться или наименьшему из них, или какому-либо кратному, т. е. мог быть равен 31,8 или 63,6, или 95,4 и т. д. Из опыта было известно, что удельная теплоемкость меди при обычных температурах равна 0,093 кал/г. * Деля среднее значение атомной теплоемкости на удельную теплоемкость, получаем 6,2:0,093 = = 67, т. е. величину, близкую ко второму из возможных значений атомного веса меди. Следовательно, это второе значение и является правильным.

* Калорией {кал) называется количество тепла, необходимое для того, чтобы нагреть на одни градус (от 19,5 до 20,5 °С) одни грамм воды, килокалорией (ккал) — один килограмм. В системе единиц СИ основной международной единицей работы, энергии и количества теплоты является джоуль (дж), эквива

страница 13
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

Скачать книгу "Основы общей химии. Том 1" (9.64Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
litened 100-50
solowheel lota
детская футбольная форма дешево
номер на дом купить в москве

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(21.10.2017)