химический каталог




Технология катализаторов

Автор И.П.Мухленов, Е.И.Добкина, В.И.Дерюжкина

зработка технологии приготовления катализаторов с низкой температурой зажигания имеет наибольшее значение для адиабатических процессов в неподвижном слое, а также благоприятно сказывается на выходе продукта изотермических процессов в кипящем слое катализатора.

Для эндотермических процессов при равенстве начальных температур изотермы и адиабаты U. „ изотермический режим (кривая 2, рис. 1.12, б) приводит к снижению средней температуры слоя катализатора, по сравнению с адиабатическим (кривая /, рис. 1.12, б), и, следовательно, к снижению скорости процесса. Однако, используя высокую эффективную теплопроводность слоя и весьма большие коэффициенты теплоотдачи в изотермических реакторах смешения, следует подводить теплоту непосредственно в слой катализатора и достигать увеличения максимальной степени превращения по сравнению с адиабатой (см. изотермы 3 и 4 на рис. 1.12, б).

Политермические процессы, в которых тепловой эффект реакции частично компенсируется за счет подвода или отвода теплоты, осуществляются в трубчатых контактных аппаратах, при этом катализатор может быть расположен в трубах (см. рис. 1.9, б) или в межтрубном пространстве [19]. Сравнение температурных режимов на рис. 1.13 показывает, что политермический процесс в одном слое катализатора дает возможность повышать выход по сравнению с адиабатическим. В пределе при полной компенсации теплового эффекта реакции за счет отвода или подвода теплоты политермический процесс переходит в изотермический и достигаются наивысшие степени превращения.

Однако трубчатые аппараты существующих конструкций не позволяют осуществлять режимы, близкие к изотермическим; в них наблюдаются местные перегревы или переохлаждения катализатора, увеличивается гидравлическое сопротивление по сравнению с полочными аппаратами, которые к тому же проще устроены и менее металлоемки. Поэтому в ряде производств [2,

19, 371 предпочитают применять катализаторы в многополочных аппаратах с промежуточным теплообменом, которые обеспечивают такой же выход продукта, как и трубчатые, при лучшей сохранности катализатора и меньшем гидравлическом сопротивлении.

Каталитические процессы в жидкой фазе

Твердые катализаторы применяют в жидкой среде гораздо реже, чем в газовой. Однако в органической технологии имеется ряд крупномасштабных процессов гидрирования тяжелых углеводородов и жиров в жидкой фазе на металлических или сульфидных катализаторах, а также процессы дегидрирования, окисления, полимеризации и т. п. [2, 7—9, 18, 361. Рассмотренные выше классификация и закономерности процессов в газовой фазе на твердых катализаторах в основном относятся и к жидкофазным процессам с учетом их специфики, однако гетерогенный катализ в жидкостях изучен в меньшей степени, чем в газах.

Применяя катализаторы в жидкой фазе, следует иметь в виду, что скорость некаталитических реакций в расчете на единицу реакционного объема в жидкостях в 103—10* раз больше, чем в газах, а коэффициент молекулярной диффузии в 103—10* раз меньше, чем в газах. Поэтому эффективность применения катализаторов в жидкой фазе [см. уравнение (1.16)! меньше, чем в газовой. Применение катализаторов в жидкой фазе необходимо сопровождать интенсивным перемешиванием для снятия внешнедиф-фузионных торможений. Мелкопористые катализаторы неэффективны из-за сильного увеличения вязкости жидкостей в порах и соответствующего снижения коэффициента диффузии [см. уравнение (1.12)1. Для увеличения поверхности контакта в жидкой среде целесообразно применять мелкодисперсные непористые катализаторы, однако при этом ухудшаются условия выделения катализатора (отстаивание, фильтрование, центрифугирование) из жидкой массы после каталитического реактора.

Обычно реагенты находятся в растворителе, который может влиять и на катализатор. Следовательно, при разработке катализаторов для жидкофазных процессов надо учитывать возможное 48 растворение компонентов катализатора в растворителе, а также вероятность адсорбции растворителя на катализаторе и замедления целевого процесса или снижения селективности катализа. В общем катализатор должен быть инертным в отношении растворителя, и при исследовании необходимо одновременно подбирать как катализатор, так и соответствующий растворитель.

В жидкой среде катализ протекает по гетерогенно-гомогенному механизму значительно чаще, чем в газовой. Это происходит по ряду причин: 1) вследствие большей скорости, чем в газовых средах, гомогенной некаталитической реакции, интенсивность которой часто бывает соизмерима с гетерогенной реакцией на твердых катализаторах; 2) в жидких средах нередко катализатор выступает лишь как возбудитель цепной радикальной реакции, которая продолжается гомогенно в растворе; 3) вследствие влияния растворителя.

Термостойкость катализатора в жидких средах обычно не имеет такого значения, как в газовых. Повышение температуры как средство интенсификации катализа в жидкофазных процессах используют гораздо реже, чем в газовых, так как оно вызывает резкий рост парциальных давлений компонентов и, как следс

страница 19
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

Скачать книгу "Технология катализаторов" (2.38Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
отражающая пленка на номерные знаки
fissler сковорода
Ti Art Wall Clock TA-7608
вертикальные ручки-скобы для дверей

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(08.12.2016)