химический каталог




Курс общей химии

Автор Э.И.Мингулина, Г. Н.Масленникова, Н.В.Коровин, Э.Л.Филиппов

. Соответственно степень окисления азота равна

KN02 1 +JCH-2(—2) = 0, х = +3 , HN03 1 -+.* + 3(—2) = 0, х= + 5.

Аналогичным способом можно определить степень окисления элементов в любых соединениях. Для примера приведем соеди-3+1 -2+1

нения азота с разными степенями его окисления: NH3, N2H4, -1+1-2+10 +2-2 +1 +3-2 +4-2 +1+5-2 NH2Ori, N2, NO, NaN02, N02, KNO3.

Окислительно-восстановительные реакции. Любая окислительно-восстановительная реакция состоит из процессов окисления и восстановления. Окисление — это отдача электронов веществом, т. е. повышение степени окисления элемента. В качестве примера рассмотрим реакцию окисления цинка: Zn° — 2e~-+Zn2+. Как видно, степень окисления цинка повышается от 0 до -j-2. Вещества, отдающие свои электроны в процессе реакции, называют восстановителями. В данной реакции восстановителем является цинк. В результате реакции степень окисления элемента возрастает. Это значит, что вещество из восстановленной формы превращается в окисленную. Для приведенной реакции восстановленной формой вещества будет • металлический цинк, а окисленной формой — ионы Zn2+.

Восстановление — это смещение электронов к веществу или понижение степени окисления элемента. Например, реакция восстановления иона Н+

2Н+ + 2е- = Н°2

Вещество, принимающее электроны, называется окислителем. В данной реакции окислителем будет ион Н+. В результате реакции степень окисления элемента понижается. Поэтому можно сказать, что вещество из окисленной формы превращается в восстановленную.

Раздельное протекание реакций окисления и восстановления происходит лишь в электрохимических процессах. В химических окислительно-восстановительных реакциях окисление и восстановление взаимосвязаны. В ходе окислительно-восстановительной реакции восстановитель отдает свои электроны окислителю. Например, в реакции окисления углерода кислородом электроны перемещаются от углерода.к кислороду:

В данной реакции участвуют разные вещества. Реакции, в которых окислители и восстановители представляют собой различные вещества, называют межмолекулярными. В некоторых реакциях окислителями и восстановителями могут быть атомы одной и той же молекулы. Такие реакции называют внутримолекулярными. Обычно это реакции разложения веществ, например

N2H4 = N2 + 2H2

В данной реакции степень окисления азота увеличивается (окисление), а степень окисления водорода уменьшается (восстановление). Разновидностью окислительно-восстановительных реакций является диспропорционирование (самоокисление — самовосстановление), при котором происходит окисление и восстановление атомов или ионов одного и того же элемента, например

ЗН2Мп02 = 2нАп04 + Мп02 + 2Н20

В окислительно-восстановительных реакциях наряду с окислителями и восстановителями могут участвовать ионы или молекулы среды. Например, в реакции окисления сульфита калия перманга-натом калия участвует серная кислота:

5К25Ьз + 2КМ7п04 + ЗН25Ь4 = 6K2S04 + 2MriS04 -f 3H20

Составление уравнений окислительно-восстановительных реакций. Уравнения окислительно-восстановительных реакций имеют очень сложный характер, и их составление представляет иногда трудную задачу. Предложено несколько методов составления этих уравнений. Рассмотрим метод электронного баланса, при котором учитывается: а) сумма электронов, отдаваемых всеми восстановителями, которая равна сумме электронов, принимаемых всеми окислителями; б) число одноименных атомов в левой и правой частях уравнения одинаково; в) если в реакции участвуют атомы кислорода, то могут образоваться или расходоваться молекулы воды (в кислой среде) или ионы гидроксида (в щелочной среде).

Составление уравнений окислительно-восстановительных реакций легче провести в несколько стадий: 1) установление формул исходных веществ и продуктов реакции; 2) определение степени окисления элементов в исходных веществах и продуктах реакции; 3) определение числа электронов, отдаваемых восстановителем и принимаемых окислителем, и коэффициентов при восстановителях и окислителях; 4) определение коэффициентов при всех исходных веществах и продуктах реакции исходя из баланса атомов в левой и правой частях уравнения. Например, составим уравнение реакции окисления сульфата железа (II) пермангана-том калия в кислой среде.

Так как реакция протекает в кислой среде, то в левой части уравнения кроме окислителя и восстановителя должна быть кислота. Продуктами реакции должны быть сульфаты марганца (II), калия, железа (III) и вода.

1. Запишем схему реакции

KMn04 -f FeSO, + H2S04~.MnS04Fe2 (S04) з + K2S04 + HsO

2. Определим степень окисления элементов

J-X-t7 Л2 Л22 + 2+6-2 +3 +6-2 +1+6-2 +J -2

KMn04 + FeS04 + H2S04 MnS04 + Fe2 (S04)3 + K2S04 + H20

Как видно, степень окисления меняется только у марганца и железа, у первого она понижается (восстановление), у второго — повышается (окисление).

3. Определим число электронов, отдаваемых восстановителем

FeS04 и принимаемых окислителем КМПО4:

KM7n04_4- 2f eSO JfnS04 + Fe2 (S04) з -4-ое —2

страница 89
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

Скачать книгу "Курс общей химии" (2.81Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(21.02.2017)